

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: 28.08.2019

Geschäftszeichen: 181 6130#2019-4/1

Prüfbericht Nr.:

TP-19-0004

Antragsteller:

Schöck Bauteile GmbH

Vimbucher Straße 2 76534 Baden-Baden (Steinbach) DEUTSCHLAND

Gegenstand der Typenprüfung:

Typenprüfung Schöck Isokorb XT Typ K + KF 6.0

Geltungsdauer

vom: 01.09.2019 bis: 31.08.2024

Dieser Prüfbericht umfasst fünf Seiten und gilt für die unter II.1 aufgeführten Bauvorlagen.

Seite 2 von 5 | 28.08.2019

I ALLGEMEINE BESTIMMUNGEN

- 1 Die Typenprüfung erfolgt gemäß § 67 Abs. 3 S. 2 BauO Bln i.V.m. §§ 14, 15 Abs. 1 und 2 BauPrüfV.
- Die Typenprüfung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Werden die geprüften Bauvorlagen nach Maßgabe dieses Prüfberichts Bestandteil des Standsicherheitsnachweises, so bedürfen sie im bauaufsichtlichen Verfahren keiner weiteren Prüfung in statischer Hinsicht.
- Die typengeprüften Bauvorlagen dürfen nur vollständig mit dem Prüfbericht und den zugehörigen Anlagen verwendet oder veröffentlicht werden. Im Zweifelsfall ist das beim Deutschen Institut für Bautechnik befindliche Exemplar maßgebend.
- Der Prüfbericht wird widerruflich erteilt. Die Prüfvermerke und die allgemeinen Bestimmungen des Prüfberichtes können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Die Typenprüfung berücksichtigt den derzeitigen Stand der Erkenntnisse. Eine Aussage über die Bewährung des Gegenstandes dieser Typenprüfung ist damit nicht verbunden.
- Die Geltungsdauer dieser Typenprüfung kann auf Antrag jeweils um höchstens 5 Jahre verlängert werden.

⁻ Bauordnung für Berlin (BauO Bln) vom 29. September 2005 (GVBI. S. 495), zuletzt geändert durch Gesetz vom 29. Juni 2011 (GVBI. S. 315)

Bautechnische Pr
 üfungsverordnung (BauPr
 üfV) vom 12. Februar 2010, zuletzt ge
 ändert durch die Zweite Verordnung vom 20. Oktober 2014 (GVBI. S. 383).

Seite 3 von 5 | 28.08.2019

II BESONDERE BESTIMMUNGEN

1 Geprüfte Bauvorlagen

1.1 Statische Berechnungen

Statische Berechnung nach DIN EN 1992-1-1/NA:2013-04, Bauteil Schöck Isokorb® XT Typ K + KF 6.0, H160-300, Index -, erstellt von SMP Ingenieure im Bauwesen GmbH, M. Eng. H. Özdil am 15.08.2019.

Die statische Berechnung besteht aus einem Deckblatt, Seite 1 bis Seite 113.

1.2 Typenblätter

Typenblätter zur statischen Berechnung Schöck Isokorb® XT Typ K + KF 6.0, H160-300, erstellt von Schöck Bauteile GmbH, M. Sc. Julia Kohns am 15.08.2019.

Die Typenblätter bestehen aus

einem Deckblatt

Anlage 0 mit einer Seite, Seite 1

Anlage 1 mit 4 Seiten, Seite 1 bis Seite 4

Anlage 2 mit 4 Seiten, Seite 1 bis Seite 4

Anlage 3 mit 5 Seiten, Seite 1 bis Seite 5

Anlage 4 mit 10 Seiten, Seite 1 bis Seite 10

2 Bautechnische Grundlagen

- DIN EN 1993-1-1:2010-12 mit Nationalen Anhang DIN EN 1993-1-1/NA:2015-08
- DIN EN 1993-1-4:2015-10 mit Nationalen Anhang DIN EN 1993-1-4/NA:2017-01
- DIN EN 1992-1-1:2011-01 mit Nationalen Anhang DIN EN 1992-1-1/NA:2013-04
- DIN EN ISO 17660-1:2006-12
- Europäische Technische Bewertung ETA-17/0261 vom 11.9.2017
- Allgemeine Bauartgenehmigung Z-15.7-338 vom 30.7.2019
- Allgemeine bauaufsichtliche Zulassung Z-30.3.-6 vom 5.3.2018

3 Allgemeine Beschreibung der Konstruktion

Gegenstand der Prüfung sind Plattenanschlüsse vom Typ Schöck Isokorb® XT Typ K + KF 6.0 als wärmedämmende Verbindungselemente zwischen Balkonplatten und Decken zur Übertragung von Biegemomenten und/oder Querkräften aus vorwiegend ruhenden Einwirkungen. Die Höhe der Balkonplatte und der Deckenplatte kann zwischen 160 mm und 300 mm liegen. Die Fugenbreite zwischen der Balkonplatte und Deckenplatte beträgt 120 mm.

Durch ein statisch wirksames Stabwerk aus Stahlstäben, welche die in der Fuge befindliche Wärmedämmung durchdringen, werden die Zugkräfte aus Biegemomenten und Querkräften von der Balkonplatte in die Deckenplatte übertragen. Die Druckkräfte aus den Biegemomenten werden durch Drucklager aus Betonelementen weitergeleitet.

Der Schöck Isokorb® XT Typ K + KF 6.0 ist durch die allgemeine Bauartgenehmigung Z-15.7-338 vom 30.7.2019 als Bauart zugelassen.

Seite 4 von 5 | 28.08.2019

Verwendete Baustoffe

Beton:

mind. C20/25, Außenbauteile mind. C25/30

Betonstahl:

B500B

Nichtrostender Stahl: B500B NR oder nichtrostender Rundstahl nach Angaben in

Europäischer Technischer Bewertung ETA-17/0261 vom 11.9.2019

5 Lastannahmen

Lastannahmen werden nicht getroffen.

Stattdessen werden aufnehmbare Traglasten für statische oder quasi-statische gleichmäßig verteilte Vertikallasten ermittelt.

6 Prüfvermerke

- 6.1 Die bautechnischen Unterlagen des Schöck Isokorb® XT Typ K + KF 6.0 nach Abs. II.1.2 wurden hinsichtlich folgender Standsicherheitskriterien geprüft:
 - Einhaltung der Grenztragkräfte der Zug- und Querkraftstäbe sowie des Betondrucklagers entsprechend des Fachwerkmodells nach Europäischer Technischer Bewertung ETA-17/0261, Anhang D3, im Fugenbereich (Dämmschichtbereich) unter der Voraussetzung, dass die zugehörige Querkraft in den maßgebenden Bemessungsfällen für das Biegemoment die in Anlage 4 der Typenblätter angegebene Mindestguerkraft v_{Ed,min} nicht unterschreiten darf.
 - erforderlichen Bestimmung der Vertikalbewehrungen (Spaltzug-Aufhängebewehrung) nach Europäischer Technischer Bewertung ETA-17/0261, Anhang D1 und Anhang D2.
 - Bestimmung der mittleren zu erwartenden Balkonverdrehungen an der Fuge infolge der Verformung des Zugstabes und des Betondrucklagers.
 - Bestimmung der erforderlichen Verankerungs- und Übergreifungslängen.
- 6.2 In der Planung, Ausführung und Überwachung des Schöck Isokorb® XT Typ K + KF 6.0 und der anschließenden Bauteile sind alle erforderlichen statischen Nachweise, außer den in II.6.1 ausgeführten Nachweisen, nach geltenden technischen Baubestimmungen, insbesondere den Bestimmungen nach allgemeiner Bauartgenehmigung Z-15.7-338, durchzuführen.
- Die in Anlage 4 der Typenblätter angegebenen Grenztragmomente m_{Rd.i} setzen ein 6.3 Vorhandensein einer Mindestquerkraft v_{Ed.min} im Bemessungsfall für Biegemomente voraus. Diese Bedingung ist einzuhalten und bei Beton mit einer Rohdichte von p ≠ 25 kN/m³ ist diese Bedingung immer rechnerisch zu prüfen.
- 6.4 Bei der Bestimmung der Momenttragfähigkeit m_{Rd,j} wurde der Anteil aus der horizontalen Komponente des Querkraftstabs auf der Höhe des Zugstabs berücksichtigt. Danach muss der Querkraftstab immer bis auf die Höhe des Zugstabs geführt werden.

Seite 5 von 5 | 28.08.2019

- Bei direkter Auflagerung der Decke an der Dämmfuge muss bei der Bestimmung der Bemessungsquerkraft die Querkraft an der Dämmfuge statt am Bemessungsschnitt angesetzt werden. Eine Reduktion der Bemessungsquerkraft infolge von Auflagerkräften zwischen Dämmfuge und Bemessungsschnitt darf nicht berücksichtigt werden.
- Die Bewehrung in der Deckenplatte und in der Balkonplatte ist nach der allgemeinen Bauartgenehmigung Z-15.7-338 mit der Bewehrung vom Schöck Isokorb® durch Übergreifung zu stoßen. Dabei ist die Lage der Bewehrung vom Schöck Isokorb® zu berücksichtigen.
- Die in II.1.2 aufgeführten Typenblätter wurden überwiegend durch Vergleichsberechnungen hinsichtlich der Standsicherheitskriterien nach II.6.1 geprüft. Die geltenden technischen Baubestimmungen wurden eingehalten.

7 Prüfergebnis

- 7.1 Die unter II.1 aufgeführten Bauvorlagen sind in statischer Hinsicht geprüft worden.
- 7.2 Die für die Prüfung maßgebenden Technischen Baubestimmungen sind eingehalten.
- 7.3 Die Erfüllung sonstiger bauaufsichtlicher oder anderer öffentlich-rechtlicher Anforderungen (z.B. bezüglich des Brandschutzes, des Wärmeschutzes, des Schallschutzes usw.) waren nicht Gegenstand der Prüfung.
- 7.4 Insoweit und bei Beachtung der unter II.6 aufgeführten Prüfvermerke bestehen keine Bedenken gegen die Bauausführung nach den geprüften Bauvorlagen.

G. Breitschaft Prüfamtsleiter Dr.-Ing. N. Liang

Bearbeiter

Anlage 0 bis Anlage 4, Typenblätter zur Statischen Berechnung Schöck Isokorb® XT Typ K + K-F 6.0 (H160-300)

Antragsteller: Schöck Bauteile GmbH 76534 Baden-Baden

Aufsteller der Statischen Berechnung: SMP Ingenieure im Bauwesen GmbH 76133 Karlsruhe

i.A. Hacer Özdil M.Eng.

Aufsteller der Anlagen: Schöck Bauteile GmbH 76534 Baden-Baden

Als TYPE in statischer Hinsicht geprüft

i. A. Julia Kohns M.Sc.

Als TYPE in statischer Hinstelle gepter

Prüfbericht Nr.: T P-19-0004

Deutsches Institut für Bautechnik

Bautechnisches Prüfamt

Berlin, den 28, 8, 2019

Prüfamtsleiter/in

Bearbeiter/in

Diese Anlagen enthalten ein Deckblatt und 24 Seiten.

0. Anwendungs- und Verwendungsrandbedingungen der statischen Berechnung

Die Statische Berechnung Schöck Isokorb® XT Typ K + K-F 6.0 (A185101) dient zur Ermittlung der Bemessungstragwiderstände im Grenzzustand der Tragfähigkeit, dem Verformungsverhalten im Grenzzustand der Gebrauchstauglichkeit, sowie dem Nachweis der erforderlichen Übergreifungslänge der Bewehrung der anschließenden Bauteile.

Die Statik bezieht sich dabei auf die in Kapitel 5 aufgeführten Typen mit den definierten Abmessungen, Bestückungen und Baustoffen. Die dazugehörigen Geometrien der Komponenten finden sich im zur Typenprüfung zugehörigen Typenplan. Die jeweiligen Bestückungen von Zugstäben, Querkraftstäben, Drucklagern und Sonderbügel sowie deren Anordnungen sind in den Positionstabellen in Anlage 3 enthalten.

Die ausgewiesenen Tragwiderstände gelten für Biegemomente und Querkräfte. Es handelt sich dabei um eine Bemessung für statische oder quasi-statische gleichmäßig verteilte Vertikallasten, wobei die Bemessung im Schnitt j_B (x=e) des Fachwerkmodells erfolgt.

Horizontallasten sind entsprechend der ETA nicht Gegenstand dieser Typenstatik. Windlasten auf den Balkon werden erst bei einer geschlossenen Brüstung maßgebend. Die Isokorb-Komponenten weisen versuchstechnisch nachgewiesene Horizontalwiderstände auf, die zum Abtrag der Windlasten herangezogen werden können. Bei außergewöhnlichen Lasten ist ein entsprechendes Modul (Isokorb® XT Typ H) zur Aufnahme der Horizontallasten einzuplanen.

Die Bemessung erfolgt für die Bezugsbetonfestigkeitsklasse C25/30. Für niedrigere Betonfestigkeitsklassen erfolgt die Berücksichtigung über einen Abminderungsfaktor.

Im Allgemeinen erfolgt die Bemessung nach dem vereinfachten Verfahren unter Ansatz eines Mindestbemessungswertes der einwirkenden Querkraft $v_{Ed,min}$. Das dabei angesetzte Eigengewicht setzt eine konstante Plattendicke (mit einer Rohdichte von $25kN/m^3$) bzw. Flächenbelastung voraus. Laut der Typenstatik ist für Kragplatten unter der Belastung aus Eigengewicht, die keine in Auskragungsrichtung abnehmenden Plattendicken oder Öffnungen aufweisen und keine Belastung durch Einzelmomente erfahren, der Nachweis $v_{Ed,min} \le v_{Ed}$ bereits erbracht und muss vom Tragwerksplaner nicht gesondert geführt werden.

Im Fall der VV-Varianten kommt das stark vereinfachte Verfahren zum Einsatz, welches auf den Ansatz von v_{Ed,min} verzichtet.

Die Grenze bezüglich einer zusätzlichen deckenseitigen Aufhängebewehrung und der anrechenbaren Vertikalbewehrung aus den Schenkeln der Querkraftstäbe liegt bei einem Abstand von $a_0 = 2$ cm zwischen Querkraftstab und Anschlussbewehrung.

Bei den ermittelten Drehwinkeln handelt es sich um eine Abschätzung einer mittleren Verformung unter der quasi-ständigen Einwirkungskombination unter der Annahme von 2/3 ständiger und 1/3 veränderlicher Last. Es erfolgt keine Berücksichtigung von Temperaturdehnungen.

Deutsches Institut

Geprüft durch das DIBt

Bautechnisches Prüfamt

für Bautechnik

1. Baustoffe und weitere Hinweise

Baustoffe

Beton: Mindestbetonfestigkeiten:

balkonseitig:

C 25/30

deckenseitig:

C 20/25

Drucklager:

Microfaserbewehrter Hochleistungsfeinbeton

Kunststoffschalung:

PE-HD Kunststoff

Betonstahl:

B500B nach DIN 488-1

Nichtrostender Betonstahl:

B500 NR nach ETA-17/0261

Dämmstoff:

Polystyrol-Hartschaum (EPS) nach DIN EN 13163,

Klasse E nach DIN EN 13501-1

Hinweise

- 1. Der Einbau erstreckt sich ausschließlich auf Decken- und Balkonplatten mit vorwiegend ruhenden, gleichmäßig verteilten Verkehrslasten nach DIN EN 1991-1-1 und DIN EN 1991-1-1/NA.
- 2. Für die Verwendung der in den Typenplänen angegebenen Bemessungsschnittgrößen, ist der Nachweis v_{Ed} ≥ v_{Ed,min} (Tabellenwert, siehe Anlage 4) im Einzelfall durch den Tragwerksplaner zu erbringen. In Fällen, in denen m_{Ed} < m_{Rd}, kann die nachzuweisende Querkraft (Tabellenwert. siehe über die Anlage 4) V_{Ed.min} v_{Ed,min(mEd)} = v_{Ed,min} - (m_{Rd} - m_{Ed})/x abgemindert werden. Für Kragplatten unter der Belastung aus Eigengewicht, die keine in Auskragungsrichtung abnehmenden Plattendicken oder Öffnungen aufweisen und keine Belastung durch Einzelmomente erfahren, wurde der Nachweis v_{Ed} ≥ v_{Ed,min} im Rahmen der Schnittgrößenermittlung bereits erbracht und muss vom Tragwerksplaner nicht gesondert geführt werden.
- 3. Für die Bewehrung der anschließenden Decken- und Balkonplatten ist ein statischer Nachweis vorzulegen.
- 4. Dehnfugen: Es sind Dehnfugen in den außenliegenden Bauteilen rechtwinklig zur Dämmschicht anzuordnen. Für die Dämmstoffstärke 120 mm darf ein Abstand von 23,0 m für Stabdurchmesser in der Fuge $\Phi \le 9.5$ mm und von 21,7 m für $\Phi = 10$ mm nicht überschritten werden.

Bautechnisches Prüfamt

Geprüft durch das DID+ Institut

- 5. Rand- bzw. Dehnfugenabstände (siehe Bild 1.2): Es ist beim Einbau des Schöck Isokorb® darauf zu achten, dass ein Achsabstand der Zugstäbe und Drucklager (vorh. a¹⁾, vgl. Tabelle 3.2 bzw. Tabelle 3.4) von mind. 50 mm und max. 150 mm und ein Achsabstand der Querkraftstäbe (vorh. b1), vgl. Tabelle 3.3) von mind. 100 mm und max. 150 mm vom freien Rand bzw. von Dehnfugen eingehalten wird. Bei Überschreitung des maximalen Abstandes ist kein linearer Anschluss mehr gegeben und die angeschlossenen Bauteile sind entsprechend zu bemessen.
- 6. Ermittlung der Bemessungsschnittgrößen: Die Bemessungsschnittgrößen beziehen sich auf den Bemessungsschnitt j_B (siehe Typenplan Bild 3.1). Dabei ist zu beachten, dass sich die Lage des Bemessungsschnittes j_B je Deckenstärke und Betondeckung verschiebt. Der Abstand x von der Dämmungskante i ist Tabelle 1.1 und Tabelle 1.2 zu entnehmen.

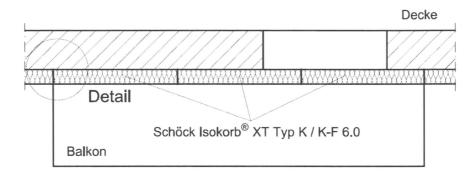


Bild 1.1: Grundriss: Einbausituation Schöck Isokorb® XT Typ K / K-F 6.0

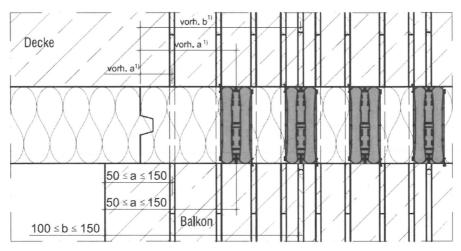


Bild 1.2: Detail: Rand- und Dehnfugenabstand der Zugstäbe, Querkraftstäbe und Drucklager [mm]

Tabelle 1.1: Lage des Bemessungsschnittes jB, Abstand x von der Dämmungskante i, CV35

Isokort	o® XT	e eye			7,71		-			n] CV3	5		2 3 4	B T		1
Isokorb® XT Typ K/K-F M1							_	h [mm]								
1,701		160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	_	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
	-	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
M2	-	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
	V2	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
	V1	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
МЗ	V2	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
	VV1	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
	V1	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
844	V2	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
1014	V3	126	140	154	169	183	197	211	226	240	254	268	283	297	311	326
	VV1	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
	V1	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
145	V2	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
IVIS	V3	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
	VV1	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
	V1	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
	V2	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
M6	V3	119	133	147	161	176	190	204	219	233	247	261	276	290	304	318
	VV1	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
P PARTY	V1	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
M7	V2	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
	VV1	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
	V1	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
M8	V2	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
	-	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
		116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
M9	V2	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
	V1	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316
M10	V2	116	130	144	159	173	187	201	216	230	244	258	273	287	301	316

Tabelle 1.2: Lage des Bemessungsschnittes jB, Abstand x von der Dämmungskante i, CV50

Isokort	® YT						Abstan	x [mm] CV50					
	S. Carrier Co. Carrier Co.							h [mm]						
Тур К	/K-F	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	133	147	161	176	190	204	219	233	247	261	276	290	304
IVI I	V2	133	147	161	176	190	204	219	233	247	261	276	290	304
M2	V1	133	147	161	176	190	204	219	233	247	261	276	290	30
IVIZ	V2	133	147	161	176	190	204	219	233	247	261	276	290	30
	V1	133	147	161	176	190	204	219	233	247	261	276	290	30
M3	V2	133	147	161	176	190	204	219	233	247	261	276	290	30
	VV1	126	140	154	169	183	197	211	226	240	254	268	283	29
	V1	133	147	161	176	190	204	219	233	247	261	276	290	30
NAA	V2	133	147	161	176	190	204	219	233	247	261	276	290	30
IVI4	V3	133	147	161	176	190	204	219	233	247	261	276	290	30
	VV1	126	140	154	169	183	197	211	226	240	254	268	283	29
	V1	126	140	154	169	183	197	211	226	240	254	268	283	29
145	V2	126	140	154	169	183	197	211	226	240	254	268	283	29
M4 M5 M6	V3	126	140	154	169	183	197	211	226	240	254	268	283	29
	VV1	126	140	154	169	183	197	211	226	240	254	268	283	29
	V1	126	140	154	169	183	197	211	226	240	254	268	283	29
MC	V2	126	140	154	169	183	197	211	226	240	254	268	283	29
IVIO	V3	126	140	154	169	183	197	211	226	240	254	268	283	29
	VV1	123	137	151	166	180	194	209	223	237	251	266	280	29
	V1	123	137	151	166	180	194	209	223	237	251	266	280	29
M7	V2	123	137	151	166	180	194	209	223	237	251	266	280	29
	VV1	123	137	151	166	180	194	209	223	237	251	266	280	29
	V1	123	137	151	166	180	194	209	223	237	251	266	280	29
M8	V2	123	137	151	166	180	194	209	223	237	251	266	280	29
	VV1	123	137	151	166	180	194	209	223	237	251	266	280	29
M9	V1	123	137	151	166	180	194	209	223	237	251	266	280	29
IVI9	V2	123	137	151	166	180	194	209	223	237	251	266	280	29
M10	V1	123	137	151	166	180	194	209	223	237	251	266	280	29
IVITO	V2	123	137	151	166	180	194	209	223	237	251	266	280	29

Verdrehung und Überhöhung

Die zu erwartenden Verdrehungen des Isokorb® in der Fuge unter der quasi-ständigen Einwirkungskombination ($q_{Ek} = 2/3 (g + q) + \psi_2 \cdot 1/3 (g + q)$ mit $\psi_2 = 0,3$) im Grenzzustand der Gebrauchstauglichkeit ohne Berücksichtigung der Temperaturverformung sind in Tabelle 1.3 zusammengefasst.

Tabelle 1.3: Mittlere zu erwartenden Verdrehungen in der Fuge

Isokort	o® XT				240/49/5	15 - 1	Drehwir	kel in d		α _{Fuge} i	m GZG	[%]		1		
Typ K	/K-F	400	470	400	400	000	040	000	h [mr	_	050	000	070	000	000	300
	V1	160	170	180	190 0.9	0.8	0.8	0.7	0,7	0.6	250 0.6	260 0.5	0.5	280 0.5	290 0.5	0.4
M1	V1 V2	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,2
	V2 V1	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,4
M2	V2	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,4
	V1	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,4
МЗ	V2	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,4
1010	VV1	1.1	1,0	1.0	0,9	0,8	0,8	0,7	0.7	0,6	0.6	0,5	0,5	0,5	0,5	0,
	V1	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,
	V2	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,
M4	V3	1.1	1,0	1.0	0.9	0,8	0,8	0,7	0.7	0.6	0.6	0,5	0,5	0.5	0,5	0,
	VV1	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0.7	0,6	0,6	0,5	0,5	0,5	0,5	0,
	V1	1,1	1,0	1,1	1,0	0,9	0,8	0,7	0,7	0,6	0.6	0,6	0,5	0,5	0,5	0,
	V2	1,1	1.0	1,1	1,0	0.9	0,8	0.7	0,7	0,6	0,6	0,6	0,5	0.5	0,5	0,
M5	V3	1,1	1,0	1,1	1,0	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,5	0,5	0,
	VV1	1,1	1,0	1,0	0,9	0,8	0,8	0,7	0,6	0,6	0,6	0,5	0.5	0,5	0,5	0,
	V1	1,1	1.0	1.1	1.0	0.9	0.8	0.7	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.
	V2	1,1	1,0	1,1	1,0	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,5	0,5	0.
M6	V3	1,1	1,0	1,1	1,0	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0.5	0,5	0,5	0,
	VV1	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0.6	0,6	0,5	0,
	V1	1,3	1,2	1,2	1,1	1,0	0,9	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
M7	V2	1,3	1,2	1,2	1,1	1,0	0,9	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
	VV1	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
	V1	1,3	1,2	1,2	1,1	1,0	0,9	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
M8	V2	1,3	1,2	1,2	1,1	1,0	0,9	0,9	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
	VV1	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
M9	V1	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
IVI9	V2	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
M10	V1	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,7	0,6	0,6	0,6	0,5	0,
IVIIU	V2	1,3	1,2	1,2	1,1	1,0	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.6	0.5	0.

Die resultierende Überhöhung der Kragplatte infolge der Verdrehung des Isokorb® unter der quasi-ständigen Einwirkungskombination ergibt sich wie folgt:

$$\ddot{u} = \alpha_{Fuge(GZG)} * l_K * \frac{m_{Ed}(GZT)}{m_{Rd}(GZT)}$$

wobei $\alpha_{Fuge(GZG)}$: Drehwinkel in der Fuge im GZG (nach Tabelle 1.3)

Kragarmlänge bezogen auf Wandmitte

m_{Ed} (GZT): vorhandenes Moment im Grenzzustand der Tragfähigkeit bezogen

auf Wandmitte

 m_{Rd} (GZT):

maximales Moment im Grenzzustand der Tragfähigkeit

entsprechend des gewählten Typen

2. **Bauseitige Bewehrung**

2.1 Ausführung der bauseitigen Vertikalbewehrung

Für den Isokorb® XT Typ K 6.0 bis zur Elementhöhe h = 250 mm und für den Typ K-F 6.0 bis h = 180 mm ist die bauseitige Bewehrung für den Fall a₀ ≤ 2 cm zu berücksichtigen (Bild 2.1 und Bild 2.2), wobei ao den Achsabstand zwischen Zuggurt und Querkraftstab beschreibt. Die erforderliche deckenseitige Vertikalbewehrung bei indirekter Lagerung (Pos. 3 Bild 2.2) ist Tabelle 2.1 und Tabelle 2.2 zu entnehmen.

Für den Fall a_o > 2 cm (Isokorb[®] XT Typ K 6.0 ab h = 260mm und K-F 6.0 ab h = 190mm) ist die Vertikalbewehrung gemäß Tabelle 2.3 und Tabelle 2.4 anzuordnen, siehe Bild 2.3 und Bild 2.4 (Pos. 3).

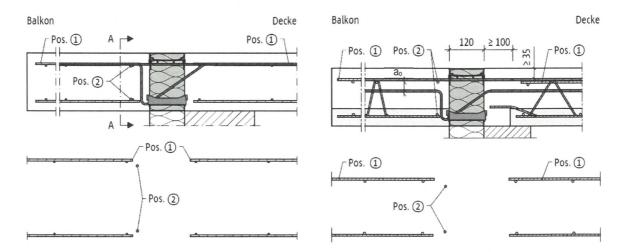
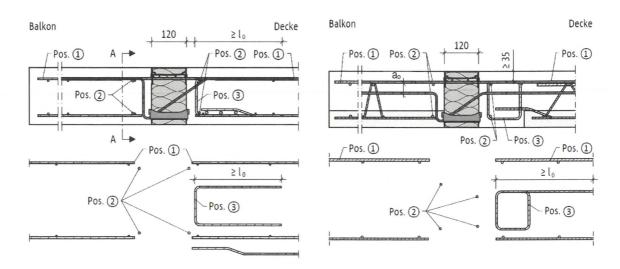



Bild 2.1: Schöck Isokorb® XT Typ K 6.0 h160 - 250 (links) und XT Typ K-F 6.0 h160 - 180 (rechts): Vorschlag Vertikalbewehrung bei ao ≤ 2 cm und direkter Lagerung

Schöck Isokorb $^{\otimes}$ XT Typ K 6.0 h160 – 250 (links) und XT Typ K-F 6.0 h160 - 180 (rechts): Bild 2.2: Vorschlag Vertikalbewehrung bei ao ≤ 2 cm und indirekter Lagerung

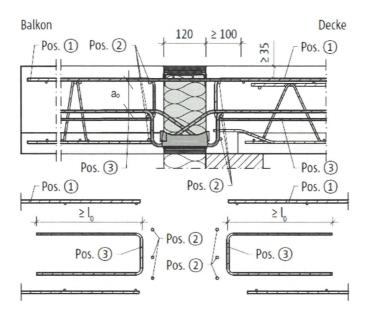


Bild 2.3: Schöck Isokorb® XT Typ K-F 6.0 h190 - 300 (und XT Typ K 6.0 h260 - 300): Vorschlag Vertikalbewehrung bei ao > 2 cm und direkter Lagerung

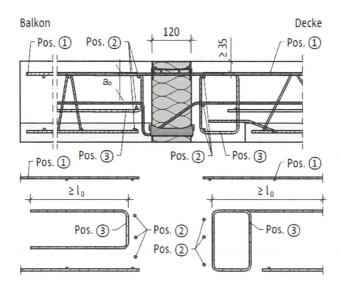


Bild 2.4: Schöck Isokorb® XT Typ K-F 6.0 h190 - 300 (und XT Typ K 6.0 h260 - 300): Vorschlag Vertikalbewehrung bei ao > 2 cm und indirekter Lagerung

Tabelle 2.1: XT Typ K h160 - 250 und XT Typ K-F h160 - 180 (a₀ ≤ 2 cm): Erforderliche Vertikalbewehrung, C20/25

1781	4	Vertikalbewehrung [cm²/m
Isokorl	TX ®	deckenseitig
Тур К	/K-F	indirekte Lagerung
M1	V1	1,13
IVI I	V2	1,13
M2	V1	1,13
IVIZ	V2	1,13
	V1	1,13
МЗ	V2	1,13
	VV1	0,00
	V1	1,13
	V2	1,13
M4	V3	1,13
	VV1	0,00
	V1	1,13
M5	V2	1,13
IVIS	V3	1,13
	VV1	0,00
165	V1	1,13
M6	V2	1,14
IVIO	V3	1,14
	VV1	0,00
	V1	1,13
M7	V2	1,13
	VV1	0,00
	V1	1,13
M8	V2	1,13
	VV1	0,00
140	V1	1,13
M9	V2	1,13

Tabelle 2.2: XT Typ K h160 - 250 und XT Typ K-F h160 - 180 ($a_0 \le 2$ cm): Erforderliche Vertikalbewehrung, C25/30 (M10: C30/37)

		Vertikalbewehrung [cm
sokort	TX®	deckenseitig
Тур К	/K-F	indirekte Lagerung
144	V1	1,13
M1	V2	1,13
	V1	1,13
M2	V2	1,13
	V1	1,13
МЗ	V2	1,13
	VV1	0,00
	V1	1,13
M4	V2	1,13
IVI4	V3	1,13
	VV1	0,00
	V1	1,13
M5	V2	1,13
CIVI	V3	1,13
	VV1	0,00
	V1	1,25
M6	V2	1,25
IAIO	V3	1,25
	VV1	0,00
	V1	1,13
M7	V2	1,13
	VV1	0,00
	V1	1,13
M8	V2	1,13
	VV1	0,00
MO	V1	1,13
M9	V2	1,13
M10	V1	1,13
INTO	V2	1,13

Tabelle 2.3: XT Typ K h260 - 300 und XT Typ K-F h190 - 300 (a₀ > 2 cm): Erforderliche Vertikalbewehrung, C20/25

		Vertika	lbewehrung [d	cm²/m]
Isokori	b® XT		decke	nseitig
Тур К	/K-F	balkonseitig	direkte Lagerung	indirekte Lagerung
M1 M2 M3 M4 M5 M6 M7 M8	V1	1,13	0,00	1,37
IVII	V2	1,13	0,00	2,11
MO	V1	1,13	0,00	1,61
M2 M3	V2	1,13	0,00	2,37
	V1	1,13	0,00	1,82
МЗ	V2	1,21	0,00	2,99
	VV1	1,75	1,75	1,75
	V1	1,25	0,00	2,19
114	V2	1,45	0,00	3,12
IVI4	V3	1,13	0,00	4,39
	VV1	1,88	1,88	1,88
	V1	1,18	0,00	2,18
ME	V2	1,35	0,00	3,13
CIVI	V3	1,13	0,00	3,98
	VV1	1,94	1,94	1,94
A. E.	V1	1,37	0,00	2,31
MG	V2	1,60	0,00	3,27
IVIO	V3	1,14	0,00	4,55
	VV1	2,13	1,13	1,13
	V1	2,02	0,00	2,55
M7	V2	1,88	0,00	3,40
	VV1	2,28	1,13	1,46
	V1	2,19	0,00	2,98
M8	V2	2,02	0,00	3,83
	VV1	2,51	1,13	1,71
M9	V1	2,70	0,00	3,83
MA	V2	2,68	0,00	4,25

Tabelle 2.4: XT Typ K h260 - 300 und XT Typ K-F h190 - 300 (a_o > 2 cm): Erforderliche Vertikalbewehrung, C25/30 (M10: C30/37)

nu il		Vertika	bewehrung [cm²/m]
Isokort	TX ®		decke	nseitig
Тур К	/K-F	balkonseitig	direkte Lagerung	indirekte Lagerung
M1	V1	1,13	0,00	1,61
IVII	V2	1,13	0,00	2,49
M2	V1	1,13	0,00	1,91
IVIZ	V2	1,16	0,00	2,79
	V1	1,23	0,00	2,08
МЗ	V2	1,36	0,00	3,46
	VV1	2,07	2,07	2,07
	V1	1,39	0,00	2,50
M4	V2	1,62	0,00	3,60
1014	V3	1,13	0,00	5,10
	VV1	2,20	2,20	2,20
	V1	1,33	0,00	2,51
M5	V2	1,51	0,00	3,61
INIO	V3	1,13	0,00	4,61
	VV1	2,29	2,29	2,29
	V1	1,56	0,00	2,67
M6	V2	1,79	0,00	3,76
IVIO	V3	1,25	0,00	5,27
	VV1	2,48	1,15	1,15
	V1	2,27	0,00	3,02
M7	V2	2,11	0,00	4,02
3.00	VV1	2,65	1,15	1,73
450	V1	2,46	0,00	3,52
M8	V2	2,26	0,00	4,52
	VV1	3,02	1,15	2,02
M9	V1	3,29	0,00	4,52
IVIÐ	V2	3,27	0,00	5,03
M10	V1	3,45	0,00	4,52
WITU	V2	3,44	0,00	5,03

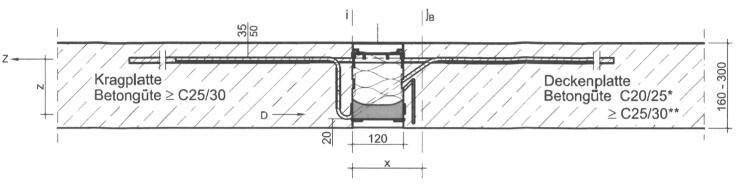
Deutsches Institut für Bautechnik

2.2 Mindestanschlussbewehrung im Zugbereich

Die Übergreifungsstöße sind nach DIN EN 1992-1-1 bzw. nach ETA-17/0261 auszuführen. Es ist darauf zu achten, dass die Lage der Bewehrung der anzuschließenden Bauteile und die der Zugund Querkraftstäbe des Isokorb® entsprechend der Regelanforderungen an Übergreifungsstöße aufeinander abgestimmt werden.

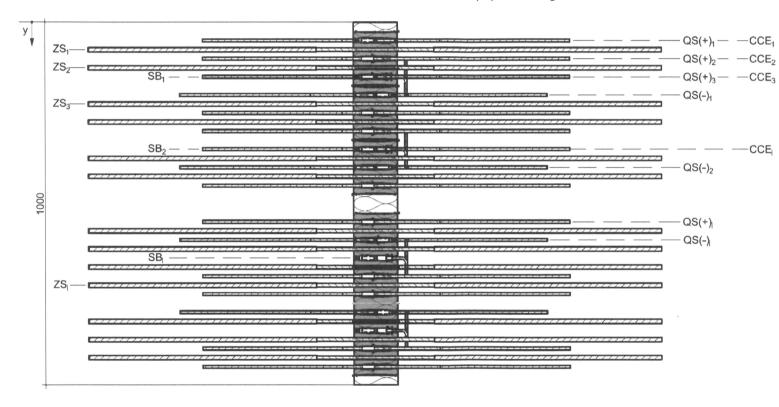
Die Mindestanschlussbewehrung nach Tabelle 2.5 ist entsprechend einzuhalten. Zudem ist der maximal zulässige Stababstand übergreifender Stäbe von 4 Φ nach DIN EN 1992-1-1 bezogen auf die Ebene der Zugstäbe zu berücksichtigen. 新加工 475 17

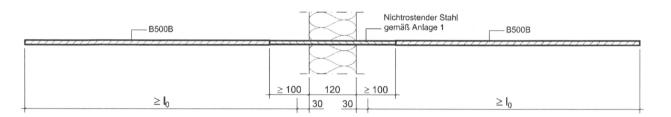
Tabelle 2.5: Mindestanschlussbewehrung as,0 [cm²/m]


Isokorb				C20	0/25					C25	/30(*)		
Typ K	K-F	ф6	ф8	φ10	φ12	φ14	φ16	ф6	ф8	φ10	φ12	φ14	ф16
M1	V1	2,50	3,02	3,78	4,53	5,29	8,63	2,72	3,03	3,70	4,43	5,17	8,45
IVII	V2	2,36	2,74	3,43	4,11	4,80	7,84	2,72	2,72	3,35	4,02	4,69	7,65
M2	V1	3,90	4,60	5,75	6,90	8,05	13,15	4,45	4,75	5,75	6,90	8,05	13,15
IVIZ	V2	3,83	4,41	5,51	6,61	7,71	12,59	4,45	4,45	5,41	6,49	7,57	12,36
	V1	5,11	5,97	7,46	8,95	10,44	17,05	5,44	5,75	6,95	8,34	9,72	15,88
M3	V2	4,97	5,71	7,13	8,56	9,99	16,31	5,44	5,44	6,62	7,94	9,27	15,13
	VV1	5,10	5,77	7,22	8,66	10,10	16,49	6,03	6,03	7,22	8,66	10,10	16,49
	V1	5,86	6,86	8,57	10,29	12,00	19,59	6,22	6,61	7,98	9,58	11,18	18,25
M4	V2	5,68	6,51	8,14	9,76	11,39	18,60	6,22	6,22	7,55	9,06	10,57	17,26
1014	V3	5,68	6,56	8,20	9,84	11,49	18,75	6,22	6,22	7,62	9,14	10,66	17,4
	VV1	5,95	6,74	8,42	10,10	11,79	19,24	6,89	6,89	8,25	9,90	11,55	18,8
	V1	6,69	7,80	9,75	11,70	13,65	22,28	7,24	7,62	9,20	11,04	12,89	21,04
M5	V2	6,61	7,56	9,45	11,34	13,23	21,61	7,24	7,24	8,77	10,52	12,28	20,0
IVIO	V3	6,61	7,60	9,50	11,40	13,30	21,71	7,24	7,24	8,81	10,58	12,34	20,1
	VV1	6,38	7,22	9,02	10,82	12,63	20,62	7,54	7,54	9,02	10,82	12,63	20,6
	V1	7,54	8,76	10,95	13,14	15,33	25,03	8,27	8,66	10,44	12,53	14,62	23,8
M6	V2	7,55	8,63	10,79	12,94	15,10	24,66	8,27	8,27	10,01	12,01	14,01	22,8
IVIO	V3	7,55	8,68	10,85	13,02	15,19	24,81	8,27	8,27	10,07	12,09	14,10	23,0
	VV1	7,62	7,62	7,62	8,75	10,21	16,67	8,80	8,80	8,80	8,80	9,97	16,2
	V1	8,93	9,31	9,93	11,56	13,48	22,01	9,79	9,79	10,40	11,02	12,61	20,5
M7	V2	8,93	9,44	10,26	11,99	13,99	22,84	9,79	9,79	10,61	11,43	13,12	21,4
	VV1	8,61	8,61	8,61	9,88	11,53	18,83	9,90	9,90	9,90	9,90	11,22	18,3
	V1	9,75	10,19	10,91	12,71	14,83	24,20	10,68	10,68	11,40	12,12	13,87	22,6
M8	V2	9,75	10,32	11,24	13,14	15,33	25,03	10,68	10,68	11,60	12,53	14,38	23,4
	VV1	9,97	9,97	9,97	11,44	13,35	21,79	12,10	12,10	12,10	12,10	13,71	22,3
M9	V1	10,56	11,13	12,05	14,07	16,42	26,81	13,17	13,17	14,09	15,02	17,20	28,0
Ma	V2	10,56	11,19	12,22	14,29	16,67	27,22	13,17	13,17	14,19	15,22	17,45	28,5
M10	V1	-	-	-	-	-	-	14,24	14,24	15,17	16,09	18,38	30,0
IVI IU	V2	-	-	-	-	-	-	14,24	14,24	15,27	16,30	18,64	30,4

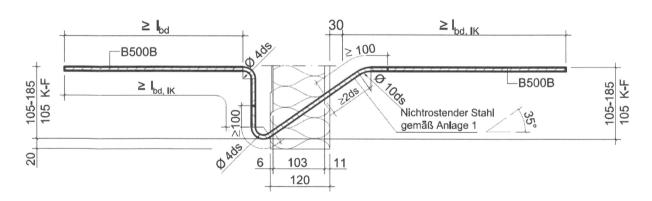
^(*) M10: C30/37

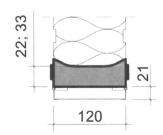
Werte ermittelt für h = 300 mm, α_6 = 1,4 (a < 8 ds und c < 4 ds) bzw. α_6 = 2,0 (ϕ 16) und $l_{0,ZS}$ für $R_{p0,2}$ 800 bzw. 820. Für h < 300 mm, α_6 < 1,4 (a > 8 ds und/oder c > 4 ds) und Rp0,2 700 kleinere Werte möglich.

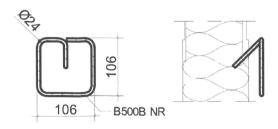

3. Zusammenstellung der Schöck Isokorb® XT Typen K und K-F 6.0



Der Abstand x des Bemessungsschnittes j_B von der Dämmungskante i ist Tab. 1.1 und 1.2 zu entnehmen.


*) **) Bemessungswiderstände beziehen sich auf die Betonfestigkeitsklasse der Deckenplatte.


Zugstäbe ZS: n Ø 8/6,5/8 – 8/7/8 – 12/9,5/12 – 12/10/12 pro Korb


Querkraftstäbe QS(+): n Ø 6 – 8 pro Korb

Drucklager CCE: n HTE20 - HTE30 - HTE Modul pro Korb

Sonderbügel SB: 4 Ø 6 pro Korb

Querkraftstäbe QS(-): n Ø 6 – 8 pro Korb

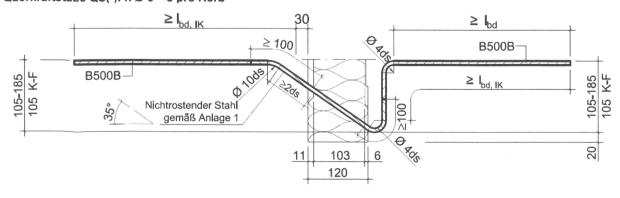


Bild 3.1: Typenplan Schöck Isokorb® XT Typ K und K-F 6.0

 Tabelle 3.1:
 Zusammenstellung der Schöck Isokorb® Typen mit der jeweiligen Bestückung

Isokorb® X K/K-		ZS (B500B)	ZS ¹⁾ (B500 NR)	ZS ²⁾ (B500 NR)	CCE	a _{CCE,cal} [mm]	SB	QS (+)	QS (-)
MA	V1	4 Ø 8	4 Ø 7	4 ∅ 6,5	4 x HTE20	125	-	4 Ø 6	-
M1	V2	4 Ø 8	4 Ø 7	4 Ø 6,5	4 x HTE20	125	-	4 Ø 8	-
M2	V1	7 Ø 8	7 Ø 7	7 Ø 6,5	6 x HTE20	125	-	4 Ø 6	-
IVIZ	V2	7 Ø 8	7 Ø 7	7 Ø 6,5	6 x HTE20	125	-	4 Ø 8	-
	V1	10 Ø 8	10 Ø 7	10 ∅ 6,5	7 x HTE20	125	-	4 Ø 6	-
M3	V2	10 ∅ 8	10 Ø 7	10 ∅ 6,5	7 x HTE20	125	-	4 Ø 6 5 Ø 8 4 Ø 8 4 5 Ø 6 5 Ø 8 8 Ø 8 4 Ø 8 4 5 Ø 6 5 Ø 8 7 Ø 8	-
	VV1	12 Ø 8	12 Ø 7	12 Ø 6,5	8 x HTEModul	100	-	4 Ø 8	4 Ø 8
113 2016	V1	12 Ø 8	12 Ø 7	12 Ø 6,5	8 x HTE20	125	-	5 Ø 6	-
M4	V2	12 Ø 8	12 Ø 7	12 ∅ 6,5	8 x HTE20	125	-	5 Ø 8	-
1014	V3	12 Ø 8	12 Ø 7	12 Ø 6,5	8 x HTE20	125	-	8 Ø 8	-
	VV1	14 Ø 8	14 Ø 7	14 Ø 6,5	8 x HTE30	100	-	4 Ø 8	4 Ø 8
	V1	13 Ø 8	13 Ø 7	13 Ø 6,5	7 x HTE30	125	-	5 Ø 6	-
M5	V2	13 Ø 8	13 Ø 7	13 ∅ 6,5	7 x HTE30	125	-	5 Ø 8	-
IVIO	V3	13 Ø 8	13 Ø 7	13 ∅ 6,5	7 x HTE30	125	-	7 Ø 8	-
	VV1	15 Ø 8	15 Ø 7	15 Ø 6,5	12 x HTEModul	50	-	4 Ø 8	4 Ø 8
	V1	15 Ø 8	15 Ø 7	15 ∅ 6,5	8 x HTE30	125	-	5 Ø 6	-
M6	V2	15 Ø 8	15 Ø 7	15 ∅ 6,5	8 x HTE30	125	-	5 Ø 8	-
IVIO	V3	15 Ø 8	15 Ø 7	15 Ø 6,5	8 x HTE30	125	-	8 Ø 8	-
	VV1	8 Ø 12	8 Ø 10	8 Ø 9,5	13 x HTEModul	50	4 Ø 6	4 Ø 8	4 Ø 8
	V1	8 Ø 12	8 Ø 10	8 Ø 9,5	11 x HTE30	250/3	4 Ø 6	6 Ø 8	-
M7	V2	8 Ø 12	8 Ø 10	8 Ø 9,5	11 x HTE30	250/3	4 Ø 6	8 Ø 8	-
	VV1	9 Ø 12	9 Ø 10	9 ∅ 9,5	15 x HTEModul	50	4 Ø 6	6 Ø 8	4 Ø 8
	V1	9 Ø 12	9 Ø 10	9 Ø 9,5	12 x HTE30	250/3	4 Ø 6	7 Ø 8	-
M8	V2	9 Ø 12	9 Ø 10	9 ∅ 9,5	12 x HTE30	250/3	4 Ø 6	9 Ø 8	-
51.41	VV1	11 Ø 12	11 Ø 10	11 Ø 9,5	17 x HTEModul	50	4 Ø 6	7 Ø 8	4 Ø 8
M9	V1	12 Ø 12	12 Ø 10	12 Ø 9,5	18 x HTEModul	50	4 Ø 6	9 Ø 8	-
IVIS	V2	12 Ø 12	12 Ø 10	12 Ø 9,5	18 x HTEModul	50	4 Ø 6	10 Ø 8	-
M10	V1	13 Ø 12	13 Ø 10	13 Ø 9,5	18 x HTEModul	50	4 Ø 6	9 Ø 8	-
IVI IU	V2	13 Ø 12	13 Ø 10	13 Ø 9,5	18 x HTEModul	50	4 Ø 6	10 Ø 8	-

¹⁾ Alternative 1: R_{p0,2} 700

²⁾ Alternative 2: R_{p0,2} 800 bzw. 820

Tabelle 3.2: Positionen der Zugstäbe

	rb [®] XT Typ K/K-F	ZS ₁	ZS ₂	ZS ₃	ZS ₄	ZS ₅	ZS ₆	ZS ₇	ZS ₈	ZS ₉	ZS ₁₀	ZS ₁₁	ZS ₁₂	ZS ₁₃	ZS ₁₄	ZS ₁₅	ZS ₁₆
	er a50)	75	125	175	225	275	325	375	425	575	625	675	725	775	825	875	925
M1	V1/V2		х					х			х					х	
M2	V1/V2	x			х				х	х			х	х			х
140	V1/V2	х	х		х		х		х	х	х		х	х			х
МЗ	VV1	х	х		х	х		х	х	х	х		х	х		х	х
144	V1/V2/V3	x	х		х	х		х	х	х	х		х	х		х	х
M4	VV1	х	х	х	х		х	х	х	х	х	х		х	х	х	×
NAC	V1/V2/V3	X	х		х	х		х	х	х	х	х	х		х	х	х
M5	VV1	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х
M6	V1/V2/V3	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х
IVIO	VV1	х		х			х		х	х		х			х		х
M7	V1/V2	Х		х			х		х	х		х			Х		х
IVI /	VV1	Х		х			х		х	х		х	х		х		х
140	V1/V2	Х		х			х		х	х		х	х		х		x
M8	VV1	х	х		×	х		х	х	х	х		х		x		×
M9	V1/V2	х	х		х	х		х	х	х	х		х	х		х	×
M10	V1/V2	х	х		х	х		х	х	х	х	х	х		х	х	х

Deutsches Institut für Bautechnik

Geprüft durch das DIBt

ARTY CONTRACTOR

Bautechnisches Prüfamt

 Tabelle 3.3:
 Positionen der positiven und negativen Querkraftstäbe

Isokorb® K/k		QS(+) ₁	QS(+) ₂	QS(+) ₃	QS(+) ₄	QS(+) ₅	QS(+) ₆	QS(+) ₇	QS(+) ₈	QS(+)9	QS(+) ₁₀	QS(+) ₁₁	QS(+) ₁₂	QS(+) ₁₃	QS(+) ₁₄	QS(+) ₁₅	QS(+) ₁₆	QS(+) ₁₇	QS(+) ₁₈	QS(+) ₁₉
Randabsta (y-Raster a		62,5	187,5	312,5	437,5	562,5	687,5	812,5	937,5											
M1 / M2 M3	V1/V2 V1	х		х		x		х												
M3 M4 M5 M6	V2 V1/V2 V1/V2 V1/V2	x		×		x	х	x												
M4 / M6	V3	х	х	х	×	х	х	х	х											
M5	V3	х	×	×		х	х	×	х											
Randabsta (y-Raster a		50	130	210	290	370	450	550	630	710	790	870	950							
M7	V1		х		×	х			×		х	х								
IVI7	V2	х	х		х	х		х	х		х	х								
M8	V1		х		x	х		х	х		х	х								
IVIO	V2		х	х	x	х		×	×	×	х	X								
Randabsta (y-Raster a		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950
M3 / M4	VV1		х				х								х				×	
M5 / M6	VV1			х				х						х				х		
M7	VV1			×		х		×						×		x		х		
M8	VV1		×	×		х		×						х		х		х		
M9 / M10	V1		х			х	х			х		×			х	x			х	х
1013 / 10110	V2	×	х			х	Х			х		X			х	х			x	x
Isokorb [®] K/K		QS(-) ₁	QS(-) ₂	QS(-) ₃	QS(-) ₄	QS(-) ₅	QS(-) ₆	QS(-) ₇	QS(-) ₈	QS(-) ₉	QS(-) ₁₀	QS(-) ₁₁	QS(-) ₁₂	QS(-) ₁₃	QS(-) ₁₄	QS(-) ₁₅	QS(-) ₁₆	QS(-) ₁₇	QS(-) ₁₈	QS(-) ₁₉
Randabsta (y-Raster a	Marine Ma	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950
M3 bis M8	VV1				х				×				×			-	×			

Tabelle 3.4: Positionen der Drucklager

Isokorb® X	T Typ K/K-F	CCE ₁	CCE ₂	CCE ₃	CCE ₄	CCE ₅	CCE ₆	CCE7	CCE ₈	CCE ₉	CCE ₁₀	CCE ₁₁	CCE ₁₂	CCE ₁₃	CCE ₁₄	CCE ₁₅	CCE ₁₆	CCE ₁₇	CCE ₁₈	CCE ₁₉
Randabsta (y-Raster	Contract to the second second	62,5	187,5	312,5	437,5	562,5	687,5	812,5	937,5											
M1	V1/V2	х		х		х		х												
M2	V1/V2	X	х	х		х	х	х												
M3	V1/V2	×	×	×		х	х	х	х											
M4	V1/V2/V3	х	х	х	х	х	х	х	х											
M5	V1/V2/V3	х	х	х		х	х	х	х											
M6	V1/V2/V3	х	х	х	×	х	х	х	х											
Randabsta (y-Raster		50	130	210	290	370	450	550	630	710	790	870	950							
M7	V1/V2	х	×	х	х	х	×	х	х	х	х	х								
M8	V1/V2	х	×	×	×	×	×	х	х	х	х	х	х							
Randabsta (y-Raster		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950
M3 / M4	VV1		х		х		х		х				х		х		х		х	
M5	VV1		х	х	х			х	х	х			х	х		х	х	Х	х	
M6	VV1		×	×	×		x	×	×	×			×	x	×		×	×	×	
M7	VV1		×	×	×	×	х	х	х				×	×	×	×	×	×	×	×
M8	VV1	×	х	х	×	х	х	х	×	х			×	х	х	×	×	×	х	х
M9 / M10	V1/V2	X	×	×	×	×	×	×	×	×		×	×	х	х	×	x	х	×	×

Tabelle 3.5: Positionen der Sonderbügel

Isokorb® XT Typ K/K-F	SB ₁	SB ₂	SB ₃	SB ₄	SB ₅	SB ₆	SB ₇	SB ₈
Randabstand [mm] (y-Raster a50)	100	150	300	350	650	700	850	900
M6 / M7 / M8 VV1	х		х			х		х
M9 / M10 V1/V2		х		х	х		х	
Randabstand [mm] (y-Raster a80)	130	370	630	870				
M7 / M8 V1/V2	×	х	×	х				

4. Bemessungstabellen

Tabelle 4.1: Bemessungswerte v_{Rd} des Querkraftwiderstandes

Isokort	®VT	C20)/25	C25/	30 (*)
Тур К		V _{Rd QS (+)} [kN/m]	VRd QS (-) [kN/m]	VRd QS (+) [kN/m]	VRd QS (-) [kN/m]
M1	V1	23,87	-	28,20	-
IVII	V2	42,43	-	50,14	-
M2	V1	23,87	-	28,20	-
IVIZ	V2	42,43	-	50,14	-
	V1	23,87	-	28,20	-
МЗ	V2	53,03	-	62,68	-
	VV1	42,43	42,43	50,14	50,14
	V1	29,83	-	35,26	-
	V2	53,03		62,68	-
M4	V3	84,85	-	100,28	-
	VV1	42,43	42,43	50,14	50,14
No. of the	V1	29,83	-	35,26	-
145	V2	53,03	-	62,68	-
M5	V3	74,25	-	87,75	-
	VV1	42,43	42,43	50,14	50,14
	V1	29,83	-	35,26	-
140	V2	53,03	-	62,68	-
M6	V3	84,85	1-1	100,28	-
	VV1	42,43	42,43	50,14	50,14
	V1	63,64	e=e	75,21	-
M7	V2	84,85	-	100,28	-
	VV1	63,64	42,43	75,21	50,14
33,640	V1	74,25	0-1	87,75	-
M8	V2	95,46	-	112,82	-
	VV1	74,25	42,43	87,75	50,14
MO	V1	95,46	2 = 3	112,82	-
M9	V2	106,07	1=1	125,35	-
M10	V1	-	-	112,82	-
MIO	V2	-	-	125,35	-

^(*) M10: C30/37

Geprüft durch das DIBt

Bautechnisches Prüfamt

Tabelle 4.2: Mindestbemessungswert vEd,min der einwirkenden Querkraft für C20/25 und CV35

Isokorb	®VT	antip			1 "			VEC	_{l,min} [k]	V/m]						
Typ K									h [mm]						
турк	1.7-1	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	8,72	9,52	10,32	11,12	11,92	12,73	13,53	14,35	15,16	15,98	16,80	17,63	18,46	19,29	20,13
IVI	V2	8,72	9,52	10,32	11,12	11,92	12,73	13,53	14,35	15,16	15,98	16,80	17,63	18,46	19,29	20,13
M2	V1	11,43	12,47	13,50	14,54	15,57	16,61	17,65	18,70	19,74	20,79	21,84	22,90	23,87	23,87	23,87
IVIZ	V2	11,43	12,47	13,50	14,54	15,57	16,61	17,65	18,70	19,74	20,79	21,84	22,90	23,96	25,03	26,10
	V1	13,60	14,82	16,05	17,27	18,49	19,72	20,94	21,75	21,75	21,75	21,75	21,75	21,75	21,75	21,75
МЗ	V2	13,60	14,82	16,05	17,27	18,49	19,72	20,94	21,75	21,75	21,75	21,75	21,75	21,75	21,75	21,75
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	14,86	16,20	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46
M4	V2	14,86	16,20	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46
1014	V3	14,86	16,20	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M5 V1 V2	15,00	16,40	17,79	19,18	20,57	21,96	23,35	24,74	26,14	27,53	28,93	29,83	29,83	29,83	29,83	
	V2	15,00	16,40	17,79	19,18	20,57	21,96	23,35	24,74	26,14	27,53	28,93	30,33	31,74	32,83	32,83
CIVI	V3	15,00	16,40	17,79	19,18	20,57	21,96	23,35	24,74	26,14	27,53	28,93	30,33	31,74	32,83	32,83
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	16,09	17,59	19,08	20,57	22,05	23,54	25,03	26,52	28,01	29,50	29,83	29,83	29,83	29,83	29,83
M6	V2	16,09	17,59	19,08	20,57	22,05	23,54	25,03	26,52	28,01	29,50	30,99	32,49	33,99	35,50	35,67
IVIO	V3	16,09	17,59	19,08	20,57	22,05	23,54	25,03	26,52	28,01	29,50	30,99	32,49	33,99	35,50	35,67
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	17,38	19,02	20,65	22,28	23,90	25,52	27,15	28,77	30,40	32,02	33,65	35,28	36,92	38,55	38,88
M7	V2	17,38	19,02	20,65	22,28	23,90	25,52	27,15	28,77	30,40	32,02	33,65	35,28	36,92	38,55	38,88
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	18,41	20,15	21,87	23,60	25,32	27,03	28,75	30,47	32,18	33,90	34,47	34,47	34,47	34,47	34,47
M8	V2	18,41	20,15	21,87	23,60	25,32	27,03	28,75	30,47	32,18	33,90	34,47	34,47	34,47	34,47	34,47
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MQ	V1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M9 $\frac{1}{V2}$	V2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Bautechnisches Prüfamt

 Tabelle 4.3:
 Bemessungswerte m_{Rd,j} des Momentenwiderstandes für C20/25 und CV35

la a la a d	®VT	m _{Rd,j} [kNm/m]														
Isokorb Typ K									h [mm]						
Typ IV	11-1	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	7,61	8,58	9,58	10,60	11,65	12,72	13,81	14,92	16,06	17,23	18,42	19,63	20,87	22,13	23,4
IVI I	V2	7,61	8,58	9,58	10,60	11,65	12,72	13,81	14,92	16,06	17,23	18,42	19,63	20,87	22,13	23,4
M2	V1	12,83	14,43	16,06	17,72	19,42	21,14	22,89	24,67	26,48	28,33	30,20	32,11	34,01	35,65	37,2
IVIZ	V2	12,83	14,43	16,06	17,72	19,42	21,14	22,89	24,67	26,48	28,33	30,20	32,11	34,04	36,01	38,0
	V1	17,98	20,20	22,45	24,73	27,05	29,41	31,80	34,13	36,29	38,45	40,61	42,77	44,92	47,08	49,2
МЗ	V2	17,98	20,20	22,45	24,73	27,05	29,41	31,80	34,13	36,29	38,45	40,61	42,77	44,92	47,08	49,2
	VV1	18,42	20,64	22,86	25,08	27,29	29,51	31,73	33,95	36,17	38,39	40,61	42,83	45,05	47,27	49,4
	V1	21,40	24,01	26,66	29,13	31,60	34,06	36,53	39,00	41,47	43,94	46,41	48,87	51,34	53,81	56,2
144	V2	21,40	24,01	26,66	29,13	31,60	34,06	36,53	39,00	41,47	43,94	46,41	48,87	51,34	53,81	56,2
M4	V3	21,40	24,01	26,66	29,13	31,60	34,06	36,53	39,00	41,47	43,94	46,41	48,87	51,34	53,81	56,2
	VV1	21,49	24,08	26,67	29,25	31,84	34,43	37,02	39,61	42,20	44,79	47,38	49,97	52,56	55,14	57,7
A - 30	M5 V1 V2	21,73	24,54	27,38	30,26	33,18	36,14	39,15	42,19	45,27	48,39	51,55	54,62	57,45	60,28	63,1
NAC		21,73	24,54	27,38	30,26	33,18	36,14	39,15	42,19	45,27	48,39	51,55	54,76	58,00	61,19	64,0
CIVI	V3	21,73	24,54	27,38	30,26	33,18	36,14	39,15	42,19	45,27	48,39	51,55	54,76	58,00	61,19	64,0
	VV1	23,02	25,80	28,57	31,34	34,12	36,89	39,67	42,44	45,21	47,99	50,76	53,54	56,31	59,08	61,8
	V1	24,93	28,13	31,38	34,66	37,99	41,36	44,78	48,23	51,73	55,28	58,56	61,76	64,96	68,16	71,3
140	V2	24,93	28,13	31,38	34,66	37,99	41,36	44,78	48,23	51,73	55,28	58,86	62,49	66,16	69,88	73,2
M6	V3	24,93	28,13	31,38	34,66	37,99	41,36	44,78	48,23	51,73	55,28	58,86	62,49	66,16	69,88	73,2
	VV1	26,85	30,17	33,48	36,80	40,11	43,43	46,74	50,06	53,37	56,69	60,00	63,32	66,63	69,95	73,2
	V1	28,97	32,76	36,60	40,48	44,41	48,38	52,40	56,47	60,58	64,74	68,95	73,20	77,50	81,85	85,8
M7	V2	28,97	32,76	36,60	40,48	44,41	48,38	52,40	56,47	60,58	64,74	68,95	73,20	77,50	81,85	85,8
	VV1	30,33	34,08	37,82	41,57	45,31	49,06	52,80	56,54	60,29	64,03	67,78	71,52	75,27	79,01	82,7
	V1	32,46	36,70	40,98	45,31	49,69	54,11	58,59	63,11	67,69	72,31	76,69	80,93	85, 16	89,40	93,6
M8	V2	32,46	36,70	40,98	45,31	49,69	54,11	58,59	63,11	67,69	72,31	76,69	80,93	85,16	89,40	93,6
	-	35,11	39,45	43,78	48,12	52,45	56,79	61,12	65,46	69,79	74,13	78,46	82,80	87,13	91,47	95,8
MO	V1	37,18	41,77	46,36	50,95	55,54	60,13	64,72	69,31	73,90	78,49	83,08	87,67	92,26	96,85	101,4
M9 -	V2	37,18	41,77	46,36	50,95	55,54	60,13	64,72	69,31	73,90	78,49	83,08	87,67	92,26	96,85	101,4

Tabelle 4.4: Mindestbemessungswert v_{Ed,min} der einwirkenden Querkraft für C20/25 und CV50

Isokort	® YT	V _{Ed,min} [kN/m] h [mm]												
Typ K								h [mm]						
1,7010		180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	9,55	10,36	11,17	11,98	12,79	13,61	14,43	15,25	16,07	16,90	17,73	18,56	19,40
IVI	V2	9,55	10,36	11,17	11,98	12,79	13,61	14,43	15,25	16,07	16,90	17,73	18,56	19,40
M2	V1	12,50	13,55	14,60	15,65	16,69	17,74	18,80	19,85	20,91	21,97	23,03	23,87	23,87
IVIZ	V2	12,50	13,55	14,60	15,65	16,69	17,74	18,80	19,85	20,91	21,97	23,03	24,10	25,17
	V1	14,86	16,10	17,34	18,58	19,82	21,05	21,75	21,75	21,75	21,75	21,75	21,75	21,75
МЗ	V2	14,86	16,10	17,34	18,58	19,82	21,05	21,75	21,75	21,75	21,75	21,75	21,75	21,75
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	16,24	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46
M4	V2	16,24	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46
101-4	V3	16,24	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46	17,46
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
C. T. C. Levis L. L.	V1	16,41	17,83	19,24	20,65	22,06	23,46	24,86	26,27	27,68	29,08	29,83	29,83	29,83
	V2	16,41	17,83	19,24	20,65	22,06	23,46	24,86	26,27	27,68	29,08	30,50	31,91	32,83
IVIO	V3	16,41	17,83	19,24	20,65	22,06	23,46	24,86	26,27	27,68	29,08	30,50	31,91	32,83
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	17,60	19,12	20,63	22,14	23,64	25,14	26,64	28,15	29,65	29,83	29,83	29,83	29,83
M6	V2	17,60	19,12	20,63	22,14	23,64	25,14	26,64	28,15	29,65	31,16	32,66	34,17	35,67
IVIO	V3	17,60	19,12	20,63	22,14	23,64	25,14	26,64	28,15	29,65	31,16	32,66	34,17	35,67
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	19,02	20,68	22,34	23,98	25,62	27,26	28,90	30,54	32,18	33,82	35,46	37,11	38,75
M7	V2	19,02	20,68	22,34	23,98	25,62	27,26	28,90	30,54	32,18	33,82	35,46	37,11	38,75
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	20,15	21,91	23,66	25,40	27,14	28,87	30,61	32,34	34,07	34,47	34,47	34,47	34,47
M8	V2	20,15	21,91	23,66	25,40	27,14	28,87	30,61	32,34	34,07	34,47	34,47	34,47	34,47
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M9	V1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
IVIS	V2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

 Tabelle 4.5:
 Bemessungswerte m_{Rd,j} des Momentenwiderstandes für C20/25 und CV50

Isokort	® YT						m _R	_{d.j} [kNn	n/m]					
Typ K				Te The				h [mm]						
туртс		180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	8,15	9,14	10,16	11,20	12,27	13,36	14,47	15,61	16,77	17,95	19,16	20,40	21,6
IVII	V2	8,15	9,14	10,16	11,20	12,27	13,36	14,47	15,61	16,77	17,95	19,16	20,40	21,6
M2	V1	13,70	15,33	16,98	18,67	20,39	22,13	23,91	25,72	27,56	29,43	31,33	33,20	34,8
IVIZ	V2	13,70	15,33	16,98	18,67	20,39	22,13	23,91	25,72	27,56	29,43	31,33	33,26	35,2
	V1	19,17	21,42	23,69	26,01	28,36	30,74	33,05	35,21	37,37	39,53	41,69	43,84	46,0
МЗ	V2	19,17	21,42	23,69	26,01	28,36	30,74	33,05	35,21	37,37	39,53	41,69	43,84	46,0
	VV1	19,53	21,75	23,97	26,19	28,40	30,62	32,84	35,06	37,28	39,50	41,72	43,94	46,1
	V1	22,79	25,42	27,89	30,36	32,83	35,30	37,77	40,23	42,70	45,17	47,64	50,11	52,5
M4	V2	22,79	25,42	27,89	30,36	32,83	35,30	37,77	40,23	42,70	45,17	47,64	50,11	52,5
IVI-	V3	22,79	25,42	27,89	30,36	32,83	35,30	37,77	40,23	42,70	45,17	47,64	50,11	52,5
	VV1	22,78	25,37	27,96	30,55	33,14	35,73	38,32	40,91	43,49	46,08	48,67	51,26	53,8
	V1	23,22	26,05	28,93	31,85	34,80	37,80	40,83	43,91	47,03	50,18	53,20	56,03	58,8
M5	V2	23,22	26,05	28,93	31,85	34,80	37,80	40,83	43,91	47,03	50,18	53,38	56,62	59,7
IVIO	V3	23,22	26,05	28,93	31,85	34,80	37,80	40,83	43,91	47,03	50,18	53,38	56,62	59,7
aya (VV1	24,41	27,18	29,96	32,73	35,51	38,28	41,05	43,83	46,60	49,37	52,15	54,92	57,7
	V1	26,62	29,86	33,14	36,46	39,83	43,23	46,68	50,18	53,71	56,96	60,16	63,36	66,5
MC	V2	26,62	29,86	33,14	36,46	39,83	43,23	46,68	50,18	53,71	57,29	60,92	64,59	68,2
M6	V3	26,62	29,86	33,14	36,46	39,83	43,23	46,68	50,18	53,71	57,29	60,92	64,59	68,2
	VV1	28,51	31,82	35,14	38,45	41,77	45,08	48,40	51,71	55,03	58,34	61,66	64,97	68,2
	V1	30,96	34,79	38,66	42,58	46,55	50,56	54,62	58,73	62,88	67,08	71,33	75,63	79,9
M7	V2	30,96	34,79	38,66	42,58	46,55	50,56	54,62	58,73	62,88	67,08	71,33	75,63	79,9
	VV1	32,20	35,95	39,69	43,44	47,18	50,93	54,67	58,42	62,16	65,91	69,65	73,40	77,14
	V1	34,68	38,95	43,28	47,65	52,07	56,54	61,05	65,62	70,24	74,57	78,81	83,05	87,2
M8	V2	34,68	38,95	43,28	47,65	52,07	56,54	61,05	65,62	70,24	74,57	78,81	83,05	87,28
	VV1	37,28	41,62	45,95	50,29	54,62	58,96	63,29	67,63	71,96	76,30	80,63	84,97	89,30
MO	V1	39,47	44,06	48,65	53,24	57,83	62,42	67,01	71,60	76,19	80,78	85,37	89,96	94,5
М9	V2	39,47	44,06	48,65	53,24	57,83	62,42	67,01	71,60	76,19	80,78	85,37	89,96	94,5

Tabelle 4.6: Mindestbemessungswert v_{Ed,min} der einwirkenden Querkraft für C25/30 (M10: C30/37) und CV35

Isokorb	® vT	V _{Ed,min} [kN/m]											999	1		400
Typ K							HIE.		h [mm]	MICO S						
турто	17-1	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	9,45	10,32	11,18	12,04	12,91	13,78	14,65	15,52	16,40	17,28	18,16	19,05	19,94	20,84	21,7
IVI	V2	9,45	10,32	11,18	12,04	12,91	13,78	14,65	15,52	16,40	17,28	18,16	19,05	19,94	20,84	21,7
M2	V1	12,40	13,52	14,64	15,76	16,88	18,00	19,12	20,25	21,38	22,51	23,64	24,78	25,93	27,07	28,2
IVIZ	V2	12,40	13,52	14,64	15,76	16,88	18,00	19,12	20,25	21,38	22,51	23,64	24,78	25,93	27,07	28,2
	V1	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,6
M3	V2	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,6
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70
MA	V2	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70
M4	V3	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,7
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FIE ST	V1	16,28	17,79	19,30	20,81	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,4
M5 $\frac{V2}{V3}$	V2	16,28	17,79	19,30	20,81	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,4
	V3	16,28	17,79	19,30	20,81	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,4
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Series.	V1	17,46	19,09	20,70	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,2
MC	V2	17,46	19,09	20,70	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,2
M6	V3	17,46	19,09	20,70	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,2
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	18,61	20,36	22,11	23,85	25,58	27,32	29,05	29,98	29,98	29,98	29,98	29,98	29,98	29,98	29,9
M7	V2	18,61	20,36	22,11	23,85	25,58	27,32	29,05	29,98	29,98	29,98	29,98	29,98	29,98	29,98	29,9
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	19,72	21,57	23,42	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,5
M8	V2	19,72	21,57	23,42	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,5
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
140	V1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
M9	V2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
1440	V1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
M10 V2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

ALL T

 Tabelle 4.7:
 Bemessungswerte m_{Rd,j} des Momentenwiderstandes für C25/30 (M10: C30/37) und CV35

Isokort	®VT	S.T.						m _R	_{d,j} [kNm	/m]						
Typ K					1 1 1 1 1 1				h [mm]							
турк	/ IX-1	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	8,88	10,01	11,17	12,34	13,55	14,78	16,03	17,31	18,62	19,95	21,31	22,70	24,11	25,54	27,0
IVI I	V2	8,88	10,01	11,17	12,34	13,55	14,78	16,03	17,31	18,62	19,95	21,31	22,70	24,11	25,54	27,0
M2	V1	15,02	16,88	18,78	20,71	22,67	24,66	26,68	28,74	30,83	32,95	35,11	37,30	39,52	41,78	44,0
IVIZ	V2	15,02	16,88	18,78	20,71	22,67	24,66	26,68	28,74	30,83	32,95	35,11	37,30	39,52	41,78	44,0
	V1	20,82	23,19	25,55	27,92	30,28	32,65	35,02	37,38	39,75	42,11	44,48	46,85	49,21	51,58	53,9
МЗ	V2	20,82	23,19	25,55	27,92	30,28	32,65	35,02	37,38	39,75	42,11	44,48	46,85	49,21	51,58	53,9
	VV1	21,77	24,39	27,01	29,63	32,26	34,88	37,50	40,12	42,75	45,37	47,99	50,62	53,24	55,86	58,4
	V1	23,80	26,50	29,20	31,91	34,61	37,32	40,02	42,72	45,43	48,13	50,84	53,54	56,24	58,95	61,6
M4	V2	23,80	26,50	29,20	31,91	34,61	37,32	40,02	42,72	45,43	48,13	50,84	53,54	56,24	58,95	61,6
IVI4	V3	23,80	26,50	29,20	31,91	34,61	37,32	40,02	42,72	45,43	48,13	50,84	53,54	56,24	58,95	61,6
	VV1	24,88	27,87	30,87	33,87	36,86	39,86	42,86	45,86	48,85	51,85	54,85	57,84	60,84	63,84	66,84
	V1	25,51	28,79	32,10	35,46	38,71	41,86	45,00	48,15	51,30	54,44	57,59	60,74	63,88	67,03	70,18
M5 -	V2	25,51	28,79	32,10	35,46	38,71	41,86	45,00	48,15	51,30	54,44	57,59	60,74	63,88	67,03	70,18
CIVI	V3	25,51	28,79	32,10	35,46	38,71	41,86	45,00	48,15	51,30	54,44	57,59	60,74	63,88	67,03	70,18
	VV1	27,21	30,49	33,77	37,04	40,32	43,60	46,88	50,16	53,43	56,71	59,99	63,27	66,55	69,83	73,10
	V1	29,28	33,02	36,81	40,64	44,24	47,83	51,43	55,03	58,62	62,22	65,82	69,41	73,01	76,61	80,20
M6	V2	29,28	33,02	36,81	40,64	44,24	47,83	51,43	55,03	58,62	62,22	65,82	69,41	73,01	76,61	80,20
IVIO	V3	29,28	33,02	36,81	40,64	44,24	47,83	51,43	55,03	58,62	62,22	65,82	69,41	73,01	76,61	80,20
	VV1	30,99	34,82	38,65	42,47	46,30	50,13	53,95	57,78	61,61	65,43	69,26	73,09	76,91	80,74	84,56
	V1	33,15	37,47	41,84	46,25	50,72	55,24	59,80	64,24	68,50	72,75	77,01	81,26	85,52	89,77	94,03
M7	V2	33,15	37,47	41,84	46,25	50,72	55,24	59,80	64,24	68,50	72,75	77,01	81,26	85,52	89,77	94,03
	VV1	34,87	39,17	43,48	47,78	52,09	56,39	60,70	65,00	69,31	73,61	77,92	82,22	86,53	90,83	95,14
	V1	37,15	41,98	46,86	51,52	56,16	60,80	65,44	70,09	74,73	79,37	84,01	88,65	93,29	97,93	102,5
M8	V2	37,15	41,98	46,86	51,52	56,16	60,80	65,44	70,09	74,73	79,37	84,01	88,65	93,29	97,93	102,5
	VV1	42,62	47,88	53,14	58,40	63,66	68,92	74,19	79,45	84,71	89,97	95,23	100,49	105,75	111,02	116,2
M9	V1	46,36	52,09	57,81	63,54	69,26	74,98	80,71	86,43	92,16	97,88	103,60	109,33	115,05	120,78	126,5
IVI9	V2	46,36	52,09	57,81	63,54	69,26	74,98	80,71	86,43	92,16	97,88	103,60	109,33	115,05	120,78	126,5
M10	V1	50,16	56,35	62,54	68,73	74,92	81,12	87,31	93,50	99,69	105,88	112,08	118,27	124,46	130,65	136,8
IVITO	M10 -	50,16	56,35	62,54	68,73	74,92	81,12	87,31	93,50	99,69	105,88	112,08	118,27	124,46	130,65	136,8

 Tabelle 4.8:
 Mindestbemessungswert v_{Ed,min} der einwirkenden Querkraft für C25/30 (M10: C30/37) und CV50

Isokort	® XT							_{min} [kN	AND REAL PROPERTY.					187.48
Тур К		180	190	200	210	220	230	h [mm] 240	250	260	270	280	290	300
	V1	10,34	11,22	12,09	12,97	13,85	14,72	15,60	16,49	17,38	18,27	19,16	20,06	20,96
M1	V2	10,34	11,22	12,09	12,97	13,85	14,72	15,60	16,49	17,38	18,27	19,16	20,06	20,9
140	V1	13,55	14,69	15,82	16,95	18,09	19,22	20,36	21,50	22,64	23,78	24,93	26,07	27,2
M2	V2	13,55	14,69	15,82	16,95	18,09	19,22	20,36	21,50	22,64	23,78	24,93	26,07	27,2
	V1	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,6
МЗ	V2	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,64	12,6
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70
144	V2	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70
M4	V3	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70	5,70
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M5 $\frac{V1}{V2}$	V1	17,81	19,35	20,87	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,4
	V2	17,81	19,35	20,87	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,4
	V3	17,81	19,35	20,87	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,42	21,4
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	19,10	20,75	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,2
140	V2	19,10	20,75	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,2
M6	V3	19,10	20,75	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,29	22,2
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	20,37	22,14	23,91	25,67	27,43	29,18	29,98	29,98	29,98	29,98	29,98	29,98	29,98
M7	V2	20,37	22,14	23,91	25,67	27,43	29,18	29,98	29,98	29,98	29,98	29,98	29,98	29,9
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	V1	21,58	23,46	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,5
M8	V2	21,58	23,46	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,57	23,5
	VV1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MO	V1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M9	V2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M10	V1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M10 $\frac{1}{\sqrt{2}}$	V2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Bautechnisches Prüfamt

 Tabelle 4.9:
 Bemessungswerte m_{Rd,j} des Momentenwiderstandes für C25/30 (M10: C30/37) und CV50

Isokorb	® VT	18 9	SHA				r	n _{Rd,j} [k	Nm/m]					
Typ K/								h [n	nm]					
тур к	K-F	180	190	200	210	220	230	240	250	260	270	280	290	300
M1	V1	9,50	10,65	11,83	13,03	14,26	15,51	16,78	18,09	19,42	20,77	22,15	23,56	25,00
IVII	V2	9,50	10,65	11,83	13,03	14,26	15,51	16,78	18,09	19,42	20,77	22,15	23,56	25,00
M2	V1	16,03	17,92	19,84	21,80	23,78	25,80	27,85	29,94	32,06	34,21	36,40	38,61	40,8
IVIZ	V2	16,03	17,92	19,84	21,80	23,78	25,80	27,85	29,94	32,06	34,21	36,40	38,61	40,8
	V1	22,00	24,37	26,74	29,10	31,47	33,83	36,20	38,57	40,93	43,30	45,66	48,03	50,4
МЗ	V2	22,00	24,37	26,74	29,10	31,47	33,83	36,20	38,57	40,93	43,30	45,66	48,03	50,4
	VV1	23,08	25,70	28,32	30,95	33,57	36,19	38,81	41,44	44,06	46,68	49,30	51,93	54,5
	V1	25,15	27,85	30,56	33,26	35,96	38,67	41,37	44,08	46,78	49,48	52,19	54,89	57,6
144	V2	25,15	27,85	30,56	33,26	35,96	38,67	41,37	44,08	46,78	49,48	52,19	54,89	57,6
M4	V3	25,15	27,85	30,56	33,26	35,96	38,67	41,37	44,08	46,78	49,48	52,19	54,89	57,6
	VV1	26,37	29,37	32,37	35,37	38,36	41,36	44,36	47,35	50,35	53,35	56,35	59,34	62,3
	V1	27,24	30,55	33,90	37,13	40,28	43,43	46,58	49,72	52,87	56,02	59,16	62,31	65,4
145	M5 V2	27,24	30,55	33,90	37,13	40,28	43,43	46,58	49,72	52,87	56,02	59,16	62,31	65,4
IVI5	V3	27,24	30,55	33,90	37,13	40,28	43,43	46,58	49,72	52,87	56,02	59,16	62,31	65,4
	VV1	28,85	32,13	35,40	38,68	41,96	45,24	48,52	51,80	55,07	58,35	61,63	64,91	68,19
	V1	31,25	35,03	38,84	42,44	46,04	49,63	53,23	56,83	60,42	64,02	67,62	71,21	74,8
	V2	31,25	35,03	38,84	42,44	46,04	49,63	53,23	56,83	60,42	64,02	67,62	71,21	74,8
M6	V3	31,25	35,03	38,84	42,44	46,04	49,63	53,23	56,83	60,42	64,02	67,62	71,21	74,8
	VV1	32,91	36,73	40,56	44,39	48,21	52,04	55,87	59,69	63,52	67,35	71,17	75,00	78,8
	V1	35,41	39,77	44,18	48,64	53,15	57,71	62,12	66,37	70,63	74,88	79,14	83,39	87,6
M7	V2	35,41	39,77		48,64			62,12	66,37	70,63	74,88	79,14	83,39	87,6
	VV1	37,02	41,33	45,63	49,94	54,24	58,54	62,85	67,15	71,46	75,76	80,07	84,37	88,6
	V1	39,67	44,54	49,20	53,84	58,48	63,12	67,76	72,41	77,05	81,69	86,33	90,97	95,6
M8	V2	39,67	44,54	49,20	53,84	58,48	63,12	67,76	72,41	77,05	81,69	86,33	90,97	95,6
	VV1		50,51	55,77	61,03	66,29	71,55	76,82	82,08	87,34	92,60	97,86	103,12	108,3
110	V1	49,23		60,67		_		83,57		95,02	100,74	106,47	112,19	117,9
M9	V2	49,23	54,95	60,67	66,40	72,12	77,85	83,57	89,29	95,02	100,74	106,47	112,19	117,9
	V1	53,25	59,44	65,64		78,02			96,60	102,79	108,98		121,36	127,5
M10	V2	53,25			71,83	_					108,98		121,36	

Tabelle 4.10:

Übergreifungslänge lo der Zugstäbe für C25/30 (M10: C30/37)

In alcorde® VT Tun	l _{0 ZS}	[mm]
Isokorb® XT Typ K/K-F	R _{p0,2} 700	R _{p0,2} 800 bzw. 820
M1 V1 bis M6 V3	459	466
M6 VV1 bis M9 V2	686	689
M10	617	620

Anlage 4, Seite 10 von 10

Verankerungs- und Übergreifungslänge der Querkraftstäbe Tabelle 4.11: für C25/30 (M10: C30/37)

Isokorb	SEA BLESSON III	I _{bd}	I ₀
Typ K/	K-F	[mm]	[mm]
M1	V1	239	334
IVII	V2	319	446
140	V1	239	334
M2	V2	319	446
	V1	239	334
M3	V2	319	446
	VV1	319	446
	V1	239	334
M4	V2	319	446
IVI4	V3	319	446
	VV1	319	446
	V1	239	334
M5	V2	319	446
IVIO	V3	319	446
	VV1	319	446
	V1	239	334
MC	V2	319	446
M6	V3	319	446
	VV1	319	446
	V1	319	446
M7	V2	319	446
	VV1	319	446
	V1	319	446
M8	V2	319	446
	VV1	319	446
M9	V1	319	446
IVI9	V2	319	446
M10	V1	286	400
IVITO	V2	286	400

Bautechnisches Prüfamt

