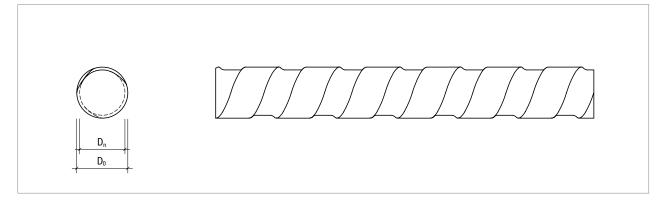
Tragwerksplanung

Tragwerksplanung

Materialeigenschaften

Schöck Isokorb® CXT

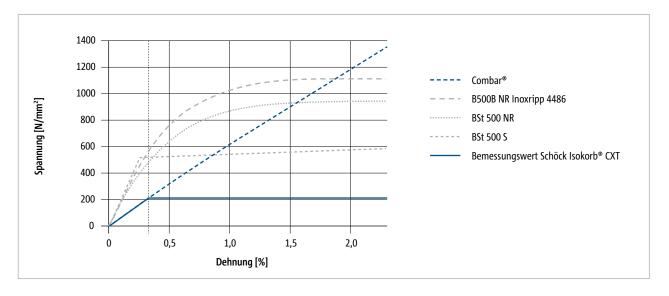

Seit vielen Jahren beschäftigt sich Schöck mit dem Einsatz von Glasfaserbewehrung im Beton. Seit 1997 ist der Stab aus Glasfaserverbundwerkstoff unter dem Namen Combar® bekannt und wird in verschiedenen Anwendungen eingesetzt - dabei stand der Einsatz im Schöck Isokorb® aufgrund der niedrigen Wärmeleitfähigkeit des Glasfaserverbundwerkstoffs immer im Fokus.

Die Entwicklung des eigenen Glasfaserstabs Combar® begann unter Einbeziehung nationaler und internationaler Experten und Genehmigungsbehörden. Dieses äußert sich insbesondere bei dem Thema Dauerhaftigkeit und Qualitätssicherung. So wurde die Produktkomponente Combar® nicht nur kurzzeitig sondern auch in Dauerstandversuchen auf Zug, Kriechen, Ermüdung und Verbund unter den verschiedensten Extrembedingungen geprüft.

Der charakteristische Wert der Zugfestigkeit für 100 Jahre in feuchtem hochalkalischem Beton wurde zu 580N/mm² ermittelt. Auch das Verbundverhalten wurde hinsichtlich Kriechen unter erhöhten Belastungen und Resttragfähigkeit langzeitig untersucht. Nach ersten Anwendungen seit 2003 liegt seit 2008 mit der Z-1.6-238 für Combar® die erste und immer noch einzige Zulassung für eine Bewehrung aus Glasfaserverbundwerkstoff in Deutschland vor.

Geometrie

Nenndurchmesser	Außendurchmesser	Kern-Querschnittsfläche	Metergewicht
D _n [mm]	D₀[mm]	[mm²]	[kg/m]
ø8	9,0	50,0	0,133


Geometrie

• Der Rippenanteil bei Combar® Stäben ist sehr hoch, ca. 50 % der Oberfläche. Deswegen sollte bei beengten Platzverhältnissen der Außendurchmesser berücksichtigt werden.

Materialeigenschaften

Materialeigenschaften im Vergleich zu Stahl

Für den Einsatz im Schöck Isokorb® CXT wurde die Tragfähigkeit des Zugstabes aus Combar® begrenzt, so dass die Dehnsteifigkeit des verwendeten Stahls und Combar® aufeinander abgestimmt sind.

Eigenscl	naft	Betonstahl BSt 500 S	Betonstahl BSt 500 NR	Zugstäbe Schöck Isokorb® CXT
char. Wert der Zugfestigkeit	f _{tk} (N/mm²)	550	550	> 1000
char. Wert der Streckgrenze	f _{yk} (N/mm²)	500	500	kein Fließen
Bemessungswert der Streckg	renze f _{yd} (N/mm²)	435	435	209
Dehnung im Grenzzustand d	er Tragfähigkeit	2,18 ‰	2,72 ‰	3,48 ‰
Biegewert Zug-E-Modul (N/mm²)		200.000	160.000	60.000
Bemessungswert der Verbundspannung f _{bd}	C20/25 (N/mm ²)	2,3	2,3	2,03
	C25/30 (N/mm ²)	2,7	2,7	2,26
Betondeckung min c _v		nach EC2	d _s + 10 mm	d _s + 10 mm
Dichte γ (g/cm³)		7,85	7,85	2,20
Wärmeleitfähigkeit λ [W/(m•K)]		50	13–15	0,7
Thermischer Längenausdehnungskoeffizient α (1/K)		0,8 - 1,2 · 10 ⁻⁵	1,2 - 1,6 · 10 ⁻⁵	0,6 · 10 ⁻⁵ (axial)/ 2,2 · 10 ⁻⁵ (radial)
Magnetismus		ja	sehr gering	nein

Lagerung und Transport

• Schöck Isokorb® CXT sollte bei längerer Lagerung gegen Regen und Sonnenstrahlen geschützt werden, um eine Verfärbung zu verhindern.

Zulassung | Baustoffe

Zulassung Schöck Isokorb® CXT Typ AP

Schöck Isokorb® Allgemeine bauaufsichtliche Zulassung Z-15.7-366

Baustoffe Schöck Isokorb®

Combar® Bewehrungsstab Schöck Combar® nach Zulassung Z-1.6-238

Betonlager HTE-Compact® 50 Betonlager (aus microstahlfaser-bewehrtem Hochleistungsfeinbeton), Klasse A1

nach EN 13501-1

PE-HD Kunststoffummantelung (nach DIN EN ISO 17855-1 und DIN EN ISO 17855-2), Klasse E nach

EN 13501-1

Dämmstoff Neopor® – Polystyrol-Hartschaum (EPS) nach DIN EN 13163, Klasse E nach DIN EN 13501-1,

eingetragene Marke der BASF, $\lambda = 0.032 \text{ W/(m-K)}$

Brandschutzmaterial Feuchtigkeitsabweisende, witterungsbeständige und UV-resistente Ausführung,

Klasse A1 nach EN 13501-1

Anschließende Bauteile

Stahlbeton Stahlbeton platten aus Normalbeton mit einer Festigkeitsklasse von mindestens C20/25

(bei Außenbauteilen C25/30) nach EN 1992-1-1

Zulassung | Baustoffe

Zulassung Schöck Isokorb® XT/T Typ AP

Schöck Isokorb® European Technical Assessment ETA-17/0261 mit CE-Kennzeichnung

Baustoffe Schöck Isokorb®

Betonstahl B500B nach DIN 488-1, Klasse A1 nach DIN EN 13501-1

Baustahl S 235 JR, S 235 JO, S 235 J2, S 355 JR, S 355 J2, oder S 355 JO nach DIN EN 10025-2 für die Druck-

platten, Klasse A1 nach DIN EN 13501-1

Nichtrostender Stahl Nichtrostender Betonstahl oder nichtrostender Rundstahl (S355, S460, S690) mit Korrosionswider-

standsklasse III nach DIN EN 1993-1-4, Klasse A1 nach DIN EN 13501-1

Dämmstoff Neopor® – Polystyrol-Hartschaum (EPS) nach DIN EN 13163, Klasse E nach DIN EN 13501-1,

eingetragene Marke der BASF, $\lambda = 0.032 \text{ W/(m} \cdot \text{K)}$

Brandschutzmaterial Feuchtigkeitsabweisende, witterungsbeständige und UV-resistente Ausführung,

Klasse A1 nach EN 13501-1, integrierte Feuerschutzbänder, Klasse E nach DIN EN 13501-1

Kunststoffschienen PVC-U nach DIN EN 13245-1 und DIN EN 13245-2, Klasse E nach EN 13501-1

Anschließende Bauteile

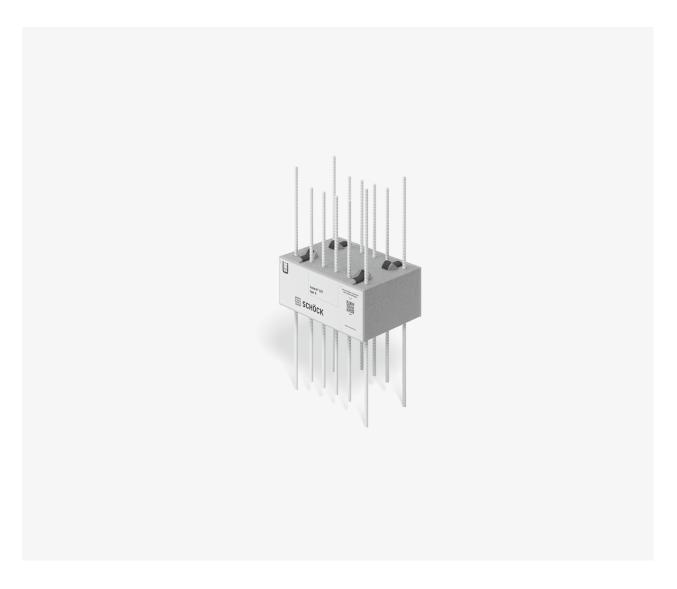
Stahlbeton Stahlbeton platten aus Normalbeton mit einer Festigkeitsklasse von mindestens C20/25

(bei Außenbauteilen C25/30) nach EN 1992-1-1

II Biegen von Betonstählen

Bei der Produktion des Schöck Isokorb® im Werk wird durch Überwachung sichergestellt, dass die Bedingungen der bauaufsichtlichen Zulassung und der EN 1992-1-1 bezüglich Biegen von Betonstählen eingehalten werden.

Achtung: Werden original Schöck Isokorb® Betonstähle bauseitig gebogen oder hin- und zurückgebogen, liegt die Einhaltung und Überwachung der betreffenden Bedingungen (Europäische technische Bewertung (ETA), EN 1992-1-1) außerhalb des Einflusses der Schöck Bauteile GmbH. Daher erlischt in solchen Fällen unsere Gewährleistung.


Planungs- und Ausführungshinweise

Anordnung über Wandöffnungen

Durch Anordnen von Schöck Isokorb® Typ AP über Wandöffnungen, wie beispielsweise Fensteröffnungen, werden in aller Regel unplanmäßig Lastanteile aus der Deckenbeanspruchung über die Zugkomponenten von Schöck Isokorb® Typ AP in die Attika oder Brüstung eingeleitet. Diese aufgehängten Lasten werden wiederum als Druckkräfte in die seitlichen Wandauflager zurückgeführt. Die Attika oder Brüstung kann dabei anschaulich als Überzug betrachtet werden. Etwaige Zusatzlasten sind bei der Bemessung zu berücksichtigen.

Vorzugsweise sind diese Zusatzbeanspruchungen zu vermeiden, indem Schöck Isokorb® Typ AP stets am seitlichen Deckenauflager neben Öffnungen angeordnet wird.

Schöck Isokorb® CXT Typ AP

Schöck Isokorb® CXT Typ AP

Tragendes Wärmedämmelement für Attiken und Brüstungen. Das Element überträgt Momente, Querkräfte und Normalkräfte.

Iragwerksplanung

Elementanordnung | Einbauschnitte

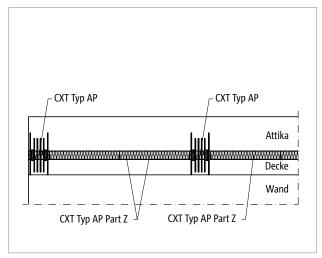


Abb. 2: Schöck Isokorb® CXT Typ AP und CXT Typ AP Part Z: Attika

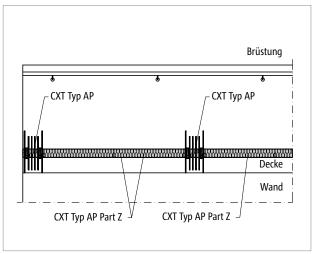


Abb. 3: Schöck Isokorb® CXT Typ AP und CXT Typ AP Part Z: Brüstung

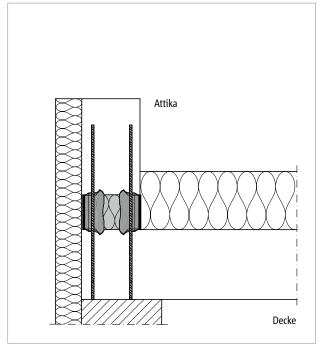


Abb. 4: Schöck Isokorb® CXT Typ AP: Anschluss einer Attika

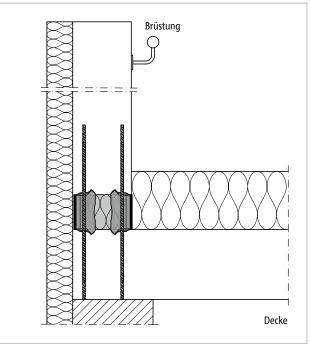


Abb. 5: Schöck Isokorb® CXT Typ AP: Anschluss einer Brüstung

Produktvarianten

Varianten Schöck Isokorb® CXT Typ AP

Die Ausführung des Schöck Isokorb® CXT Typ AP kann wie folgt variiert werden:

Haupttragstufe:

MM1

Nebentragstufe:

V/V1

• Feuerwiderstandsklasse:

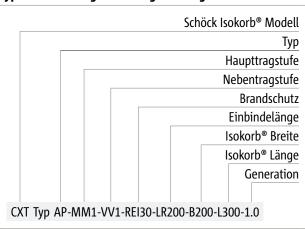
REI30: Brandschutzplatte bündig

■ Einbindelänge:

LR200 = 200 mm für die Deckenstärke: 180 bis 220 mm LR220 = 220 mm für die Deckenstärke: 200 bis 240 mm LR240 = 240 mm für die Deckenstärke: 220 bis 260 mm LR280 = 280 mm für die Deckenstärke: 260 bis 300 mm

■ Isokorb® Breite:

B = 150 bis 280 mm


■ Isokorb® Länge:

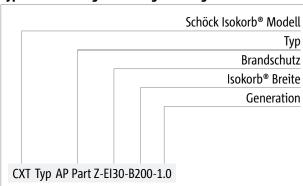
L = 300 mm

• Generation:

1.0

Typenbezeichnung in Planungsunterlagen

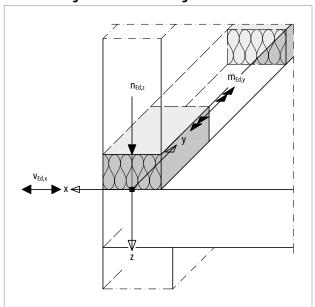
Produktvarianten


Varianten Schöck Isokorb® CXT Typ AP Part Z

Die Ausführung des Schöck Isokorb® CXT Typ AP Part Z kann wie folgt variiert werden:

- Feuerwiderstandsklasse:
 - EI30: Brandschutzplatte bündig
- Dämmkörperdicke:
 - X120 = 120 mm
- Isokorb® Breite:
 - B = 150 bis 280 mm
- Isokorb® Länge:
 - L = 1000 mm
- Generation:

1.0


Typenbezeichnung in Planungsunterlagen

CXT Jyp AP

Vorzeichenregel | Produktbeschreibung

Vorzeichenregel für die Bemessung

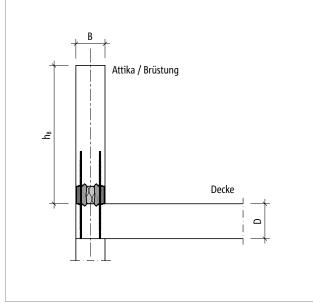


Abb. 6: Schöck Isokorb® CXT Typ AP: Vorzeichenregel für die Bemessung

Abb. 7: Schöck Isokorb® CXT Typ AP: Statisches System

Schöck Isokorb® CXT Typ AP 1.0	MM1
Bestückung bei	Isokorb® Länge [mm]
	300
Zug-/Druckstäbe	2 × 6 Ø 8
Drucklager [Stk.]	4
Brüstung/Attika B _{min} [mm]	150
Decke D _{min} [mm]	180

Mindesthöhe für Attika und Brüstung

Schöck Isokorb® CXT Typ AP 1.0		MM1	
Einbindelänge [-]	Längenjustierung Eckstäbe [mm]	Deckendicke D [mm]	Mindesthöhe h _B [mm]
	-20	180	340
LR200	0	200	320
	+20	220	300
	-20	200	360
LR220	0	220	340
	+20	240	320
	-20	220	380
LR240	0	240	360
	+20	260	340
	-20	260	420
LR280	0	280	400
	+20	300	380

Produktinformationen

- Längenjustierung Eckstäbe siehe Produktbeschreibung
- Zum Anschluss von Attika oder Brüstung gilt: 300 mm ≤ h_B ≤ 1600 mm.

Bemessung

Ermittlung der maximalen Achsabstände

Der maximale Achsabstand a_{max} mehrerer Schöck Isokorb® CXT Typ AP ist abhängig von den einwirkenden Momenten m_{Ed,v}, Nor $malkr\"{a}ften \ n_{Ed,z}, \ Querkr\"{a}ften \ v_{Ed,x} \ und \ der \ Einbausituation. \ Er \ kann \ mit \ Hilfe \ der \ nach stehend \ beschriebenen \ Vorgehensweise \ er-der \ nach stehend \ beschriebenen \ Vorgehensweise \ er-der \ nach \ nach$ mittelt werden.

Vorgehensweise:

Ermittlung Kombinationsfaktor KF:

$$KF = [m_{Ed}/(B - 0.07) + n_{Ed}/2] / |v_{Ed}|$$

Ermittlung maximaler Elementachsabstand:

0,6 m
$$\leq$$
 maximaler Elementachsabstand $a_{max} = min(F_t; F_c) / (KF \cdot |v_{Ed}|) \leq 3,0 m$

mit

B: Schöck Isokorb® CXT Typ AP Breite [m]

VED: Bemessungswert der einwirkenden Querkraft im Bemessungsschnitt [kN/m]

n_{ED}: Bemessungswert der einwirkenden Normalkraft im Bemessungsschnitt [kN/m]

m_{ED}: Bemessungswert des einwirkenden Biegemoments im Bemessungsschnitt [kNm/m]

Ft: Widerstand der Zugstrebe [kN/Element] - siehe Diagramm

F_c: Widerstand der Druckstrebe [kN/Element] - siehe Diagramm

a_{max}: maximaler Elementachsabstand bei 100% Ausnutzung im Grenzzustand der Tragfähigkeit [m]

Bemessung

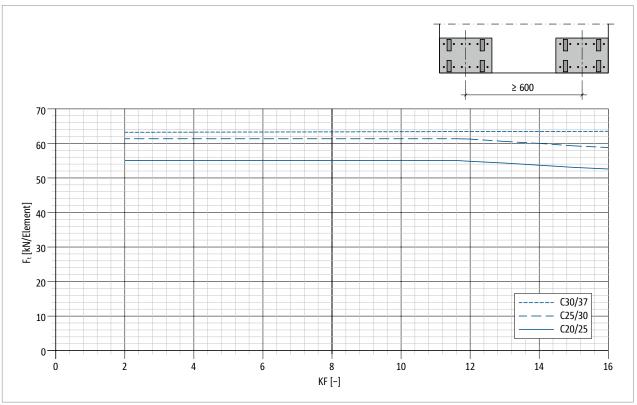


Abb. 8: Schöck Isokorb® CXT Typ AP: Widerstand der Zugstrebe F_t für Elementachsabstand \geq 600 mm

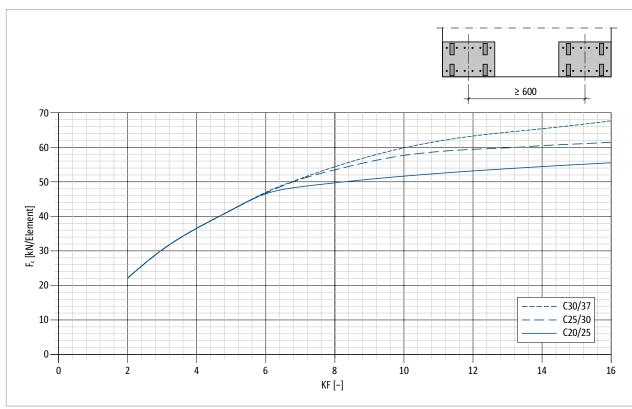


Abb. 9: Schöck Isokorb® CXT Typ AP: Widerstand der Druckstrebe F_c [kN/Element] für Elementachsabstand \geq 600 mm

Iragwerksplanur

Dehnfugenabstand

Maximaler Dehnfugenabstand

Im außenliegenden Bauteil sind Dehnfugen anzuordnen. Maßgebend für die Längenänderung aus Temperatur ist der maximale Abstand e₃ der Außenkanten der äußersten Schöck Isokorb® Typen. Hierbei kann das Außenbauteil über den Schöck Isokorb® seitlich überstehen.

Bei Fixpunkten wie z. B. Ecken gilt die halbe maximale Länge ea vom Fixpunkt aus.

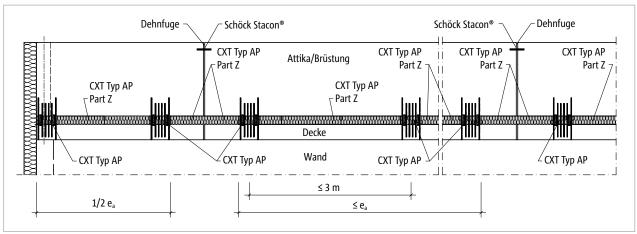


Abb. 10: Schöck Isokorb® CXT Typ AP: Dehnfugenanordnung

Schöck Isokorb® CXT Typ AP 1.0		MM1
Maximaler Abstand	bei	e _a [m]
Dämmkörperdicke [mm]	120	23,0

II Hinweis

■ Der zulässige Elementachsabstand sollte mindestens ≥ 0,6 m und darf maximal ≤ 3,0 m betragen.

Produktbeschreibung

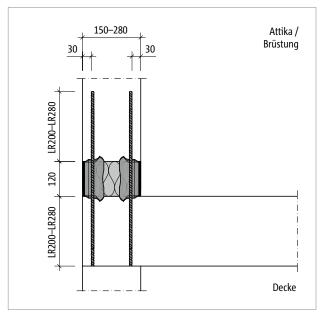


Abb. 11: Schöck Isokorb® CXT Typ AP-MM1-REI30: Produktschnitt

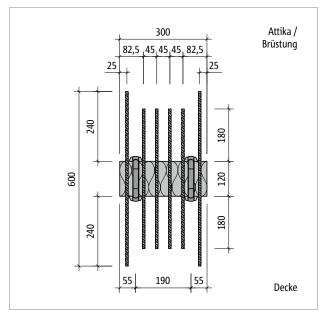


Abb. 12: Schöck Isokorb® CXT Typ AP-MM1-REI30-LR240: Produktansicht für Deckendicke D = 240 mm

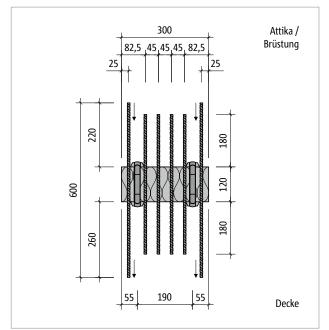


Abb. 13: Schöck Isokorb® CXT Typ AP-MM1-REI30-LR240: Produktansicht für Deckendicke D = 260 mm - Eckstäbe sind um +20 mm verschoben.

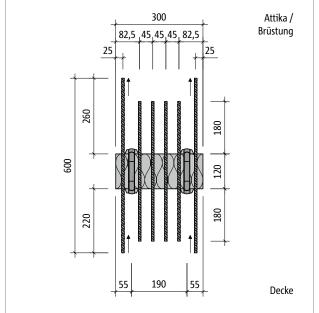


Abb. 14: Schöck Isokorb® CXT Typ AP-MM1-REI30-LR240: Produktansicht für Deckendicke D = 220 mm - Eckstäbe sind um -20 mm verschoben.

Produktinformationen

- Mindestbreite der Brüstung oder Attika B_{min} = 150 mm, Mindestdeckendicke D_{min} = 180 mm beachten.
- Maximale Deckendicke D_{max} = 300 mm
- Durch integrierte Kunststoffclips lassen sich die vier Eckstäbe um +/- 20 mm verschieben.
- Download weiterer Grundrisse und Schnitte unter cad.schoeck.at

Produktbeschreibung

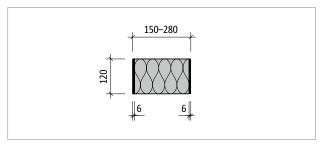


Abb. 15: Schöck Isokorb® CXT Typ AP Part Z: Produktschnitt

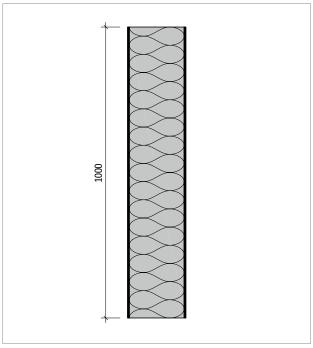


Abb. 16: Schöck Isokorb® CXT Typ AP Part Z: Produktdraufsicht

Produktinformationen

Download weiterer Grundrisse und Schnitte unter cad.schoeck.at

Bauseitige Bewehrung

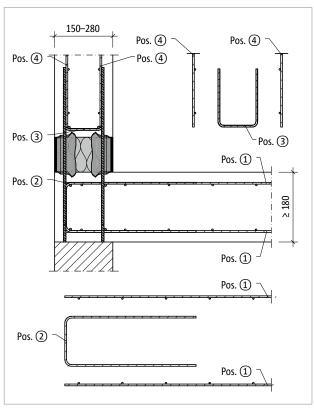


Abb. 17: Schöck Isokorb® CXT Typ AP: Bauseitige Bewehrung

Schöck Isokorb®	CXT Typ AP 1.0	MM1	
Bauseitige Bewehrung	Ort	Betonfestigkeitsklasse ≥ C20/25	
Längsbewehrung			
Pos. 1	s. 1 deckenseitig nach Angabe des Tragwerksplaners		
Konstruktive Randeinfassung			
Pos. 2	deckenseitig	nach Angabe des Tragwerksplaners	
Bügel			
Pos. 3	brüstungsseitig	nach Angabe des Tragwerksplaners	
Längsbewehrung			
Pos. 4	brüstungsseitig	nach Angabe des Tragwerksplaners	

■ Info bauseitige Bewehrung

• Es ist keine zusätzliche bauseitige Bewehrung für den Anschluss mit Schöck Isokorb® CXT Typ AP erforderlich.

agwerksplanun

Bemessungsbeispiel

Gegeben:

Betonfestigkeitsklasse Brüstung C25/30 Brüstung Breite B = 0,20 m Brüstung Höhe $h_B = 1,00 \text{ m}$ Betonfestigkeitsklasse Decke C25/30 Deckedicke D = 0,20 m

Belastungsannahmen:

Eigengewicht und Ausbau $g_k = 6,00 \text{ kN/m}$ Wind $w_k = 1,20 \text{ kN/m}^2$ Holmlast $q_k = 1,00 \text{ kN/m}$

Gewählt: Schöck Isokorb® CXT Typ AP-MM1-REI30-LR200-B200-L300-1.0

Einwirkungen:

Normlakraft $n_{Ed,z} = \gamma_G \cdot g_k = 1,35 \cdot 6,00 \text{ kN/m} = 8,1 \text{ kN/m}$

Querkraft $v_{Ed,x} = -(\gamma_Q \cdot w_k \cdot h_B + \gamma_Q \cdot \psi_0 \cdot q_k)$

 $v_{Ed.x} = -(1.5 \cdot 1.2 \cdot 1.00 + 1.5 \cdot 0.7 \cdot 1.0) = -2.85 \text{ kN/m}$

Biegemoment $m_{Ed,y} = \gamma_Q \cdot w_k \cdot h^2_B/2 + \gamma_Q \cdot \psi_0 \cdot q_k \cdot h_B$

 $m_{Ed,v} = 1.5 \cdot 1.2 \cdot 1.0 \cdot 0.5 + 1.5 \cdot 0.7 \cdot 1.0 \cdot 1.0 = 1.95 \text{ kNm/m}$

Ermittlung Kombinationsfaktor KF: $KF = [m_{Ed}/(B - 0.07) + n_{Ed}/2] / |v_{Ed}| = 6.68 [-]$

Ablesung des Widerstands der Zugstrebe und der Druckstrebe aus den Diagrammen (siehe Seite 23):

 $F_t = 61,0 \text{ kN/m}$ $F_c = 49,0 \text{ kN/m}$

Ermittlung Elementabstand bei 100% Ausnutzung im Grenzzustand der Tragfähigkeit:

 $a_{max} = min(F_t; F_c) / (KF \cdot |v_{Ed}|) \le 3,00 \text{ m}$

 $a_{max} = min(61,0; 49,0) / (6,68 \cdot 2,85) = 2,60 \text{ m} \le 3,00 \text{ m}$

 $a_{max} = 2,60 \text{ m}$

Gewählter Achsabstand:

 $a_{prov} = 2,50 \text{ m}$

Ausnutzunggrad im Grenzzustand der Tragfähigkeit:

 $a_{prov} / a_{max} = 2,50 \text{ m} / 2,60 \text{ m} = 0,96$

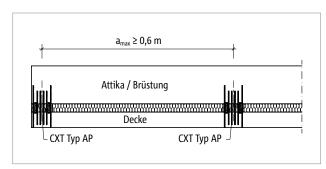


Abb. 18: Schöck Isokorb® CXT Typ AP: Nachweis erfüllt, wenn gewählter Abstand $\leq a_{max}$ und $\geq 0,60$ m

Fertigteilbauweise

Einsatz in Halbfertigteildecken

Für den Einsatz des Schöck Isokorb® CXT Typ AP ist eine Mindesteinbindelänge von 180 mm in Ortbeton auf der Deckenseite erforderlich. Bei Einsatz von Halbfertigteildecken müssen möglicherweise Aussparungen in der Elementplatte eingeplant werden. Die Mindestabmessungen der Aussparung können aus den Abbildungen unten entnommen werden.

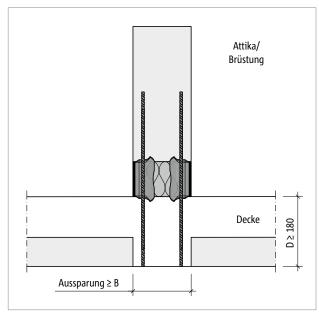


Abb. 19: Schöck Isokorb® CXT Typ AP: Schnitt; Mindestabmessung Aussparung Elementplatte

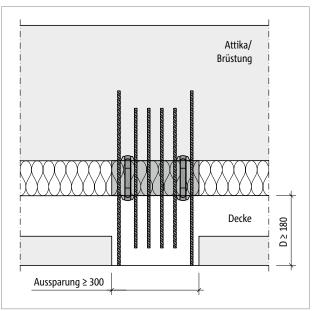


Abb. 20: Schöck Isokorb® CXT Typ AP: Ansicht; Mindestabmessung Aussparung Elementplatte

Schöck Combar® Fertigteil-Montagestütze

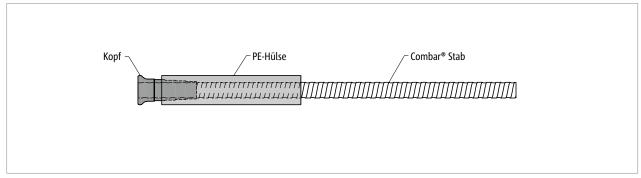


Abb. 21: Schöck Combar® Fertigteil-Montagestütze: Combar® Einzelkopfbolzen mit Hülse

Schöck Combar® Fertigteilmontagestütze	L650	L850	
B I .	Stablänge [mm]		
Bestückung bei	650	850	
Durchmesser [mm]	25	25	
Max. Belastung pro Stütze [kN]	30	30	
Max. freie Länge [mm]	500	500	
Min. Verankerungslänge FT [mm]	250	250	

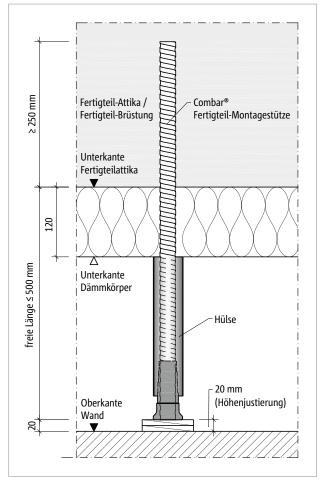
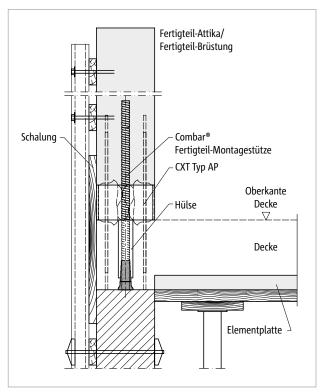



Abb. 22: Schöck Combar® Fertigteil-Montagestütze: Planungsmaße

Schöck Combar® Fertigteil-Montagestütze | Einbauanleitung

Fertigteil-Attika /
Fertigteil-Brüstung

Wand

CXT Typ AP

Decke

CXT Typ AP

Combar®
Fertigteil-Montagestütze

Abb. 23: Schöck Combar® Fertigteil-Montagestütze: Einbau einer Fertigteilattika; Schnitt

Abb. 24: Schöck Combar® Fertgteil-Montagestütze: Einbau einer Fertigteilattika; Ansicht

Produkt

- Die Schöck Combar® Fertigteil-Montagestütze kann nur kurzfristig im Bauzustand die angegebene Belastung aufnehmen.
- Die Schöck Combar® Fertigteil-Montagestütze ist nur in Verbindung mit dem Schöck Isokorb® CXT Typ AP einsetzbar und für alle Feuerwiderstandsklassen verwendbar.
- Die Hülse ist konstruktiv erforderlich und wird in die Decke einbetoniert (Vermeidung von Zwang zwischen Fertigteil und Decke).

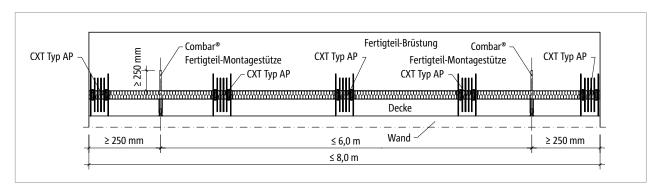
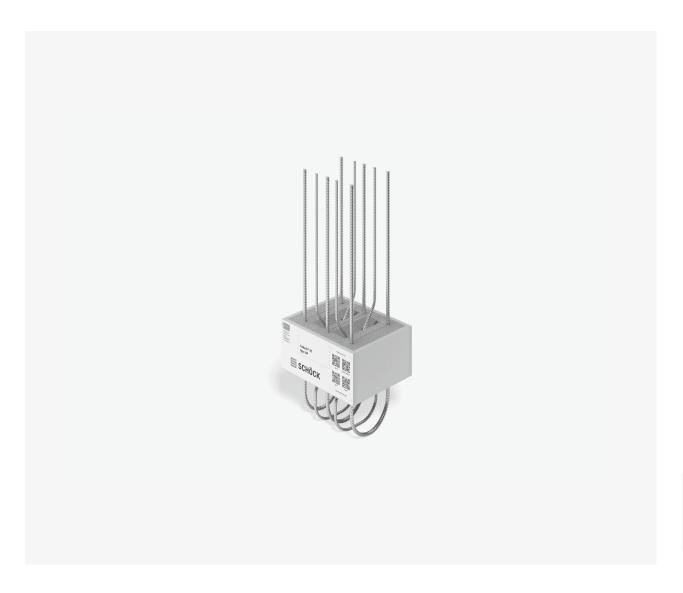


Abb. 25: Schöck Isokorb® CXT Typ AP mit Combar® Fertigteil-Montagestütze: Randabstände und Mindesteinbindelänge in der Fertigteilbrüstung


ii Einbauanleitung

Die aktuelle Einbauanleitung finden Sie online unter: www.schoeck.com/view/14205

☑ Checkliste

Sind die Einwirkungen am Schöck Isokorb® Anschluss auf Bemessungsniveau ermittelt?
Ist der maximale Abstand der äußersten Schöck Isokorb® Typen infolge von Dehnungen im Außenbauteil eingehalten?
Sind die Anforderungen hinsichtlich Brandschutz geklärt?
Sind Zusatzbelastungen aufgrund der Anordnung von Schöck Isokorb® Typ AP über Wandöffnungen berücksichtigt?

Schöck Isokorb® XT/T Typ AP

Schöck Isokorb® XT/T Typ AP

Tragendes Wärmedämmelement für Attiken und Brüstungen. Das Element überträgt Momente, Querkräfte und positive Normalkräfte.

Elementanordnung

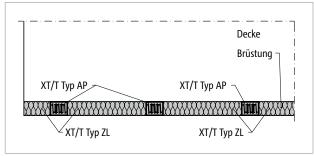


Abb. 26: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Grundriss Brüstung aufgesetzt

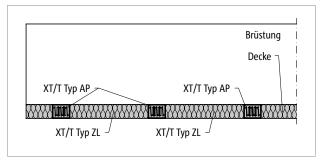


Abb. 27: Schöck Isokorb® XT/T Typ AP horizontale Anordnung: Grundriss Brüstung vorgesetzt

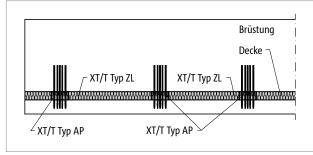


Abb. 28: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Ansicht Brüstung aufgesetzt

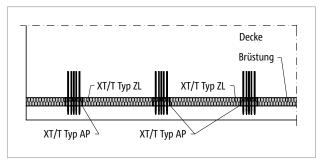


Abb. 29: Schöck Isokorb® XT/T Typ AP horizontale Anordnung: Ansicht Brüstung vorgesetzt

Einbauschnitt | Einbauschnitte

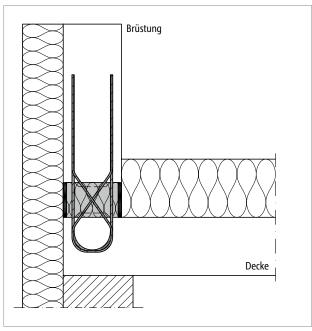


Abb. 30: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Anschluss einer aufgesetzten Brüstung

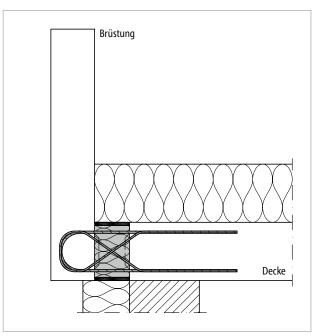


Abb. 31: Schöck Isokorb® XT/T Typ AP horizontale Anordnung: Anschluss einer Brüstung

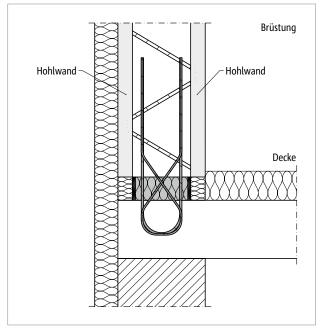


Abb. 32: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Anschluss einer Hohlwand

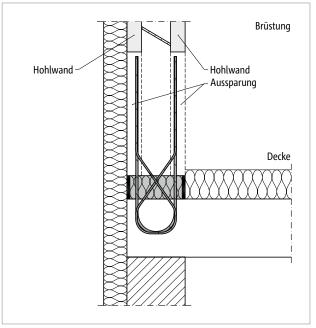


Abb. 33: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Anschluss einer Hohlwand

Elementanordnung/Einbauschnitte

• Für die Dämmung zwischen den Schöck Isokorb® ist der Schöck Isokorb® XT/T Typ ZL in Brandschutzausführung EI 120 erhältlich.

Produktvarianten | Typenbezeichnung | Sonderkonstruktionen

Varianten Schöck Isokorb® XT/T Typ AP

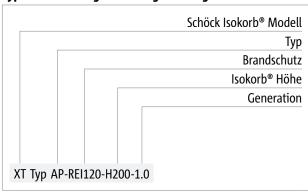
Die Ausführung des Schöck Isokorb® XT/T Typ AP kann wie folgt variiert werden:

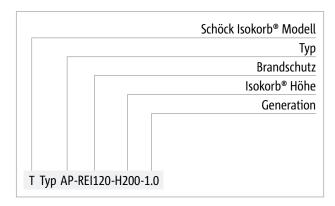
Typ:

AP = Isokorb® für Attiken und Brüstungen punktuell versetzt

• Feuerwiderstandsklasse:

REI120


■ Isokorb® Höhe:


H = 160 - 250 mm

Generation:

1.0

Typenbezeichnung in Planungsunterlagen

Sonderkonstruktionen

Anschlusssituationen, die mit den in dieser Technischen Information dargestellten Standard-Produktvarianten nicht realisierbar sind, können bei der Anwendungstechnik (Kontakt siehe Seite 3) angefragt werden.

Vorzeichenregel

Vorzeichenregel für die Bemessung

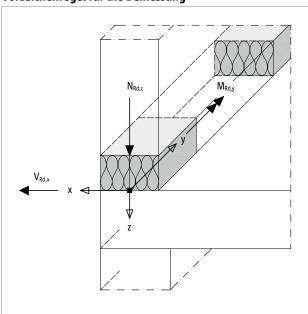


Abb. 34: Schöck Isokorb® XT/T Typ AP: Vorzeichenregel für die Bemessung von aufgesetzten Brüstungen

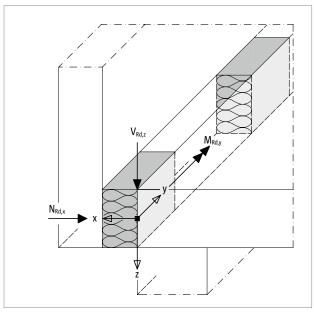


Abb. 35: Schöck Isokorb® XT/T Typ AP Vorzeichenregel für die Bemessung von vorgesetzten Brüstungen

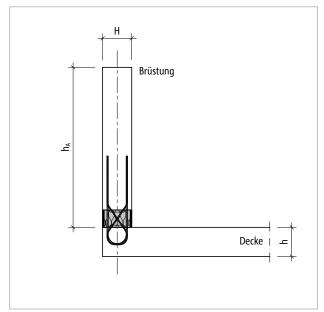


Abb. 36: Schöck Isokorb $^{\otimes}$ XT/T Typ AP: Statisches System Brüstungshöhe $h_{\rm A}$

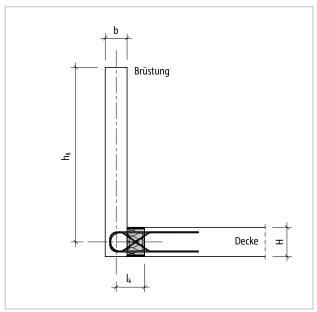


Abb. 37: Schöck Isokorb $^{\otimes}$ XT/T Typ AP: Statisches System Brüstungshöhe h_{B}

Bemessung C25/30

Schöck Isokorb® XT/T Typ AP 1.0		MM1-VV1
Damasaanna aansanta kai		Decke (XC4), Brüstung (XC4) Betonfestigkeit ≥ C25/30
Bemessungswerte b	Jei	M _{Rd,y} [kNm/Element]
	160-190	±4,6
	200-250	±6,6
Isokorb® Höhe H [mm]		N _{Rd} [kN/Element]
	160-250	-12,5
		V _{Rd} [kN/Element]
	160-250	±12,5

Schöck Isokorb® XT/T Typ AP 1.0	MM1-VV1
Bestückung bei	Isokorb® Länge [mm]
	250
Zug-/Druckstäbe	3 Ø 8
Querkraftstäbe	2 Ø 6
Brüstung b _{min} [mm]	160
Decke h _{min} [mm]	160

ragwerksplanu

Dehnfugenabstand

Maximaler vertikaler Dehnfugenabstand in horizontaler Richtung

Im außenliegenden Bauteil sind vertikale Dehnfugen anzuordnen. Maßgebend für die Längenänderung aus Temperatur ist der maximale Abstand ea der Außenkanten der äußersten Schöck Isokorb® Typen. Hierbei kann das Außenbauteil über den Schöck Isokorb® seitlich überstehen.

Bei Fixpunkten wie z.B. Ecken gilt die halbe maximale Länge ea vom Fixpunkt aus.

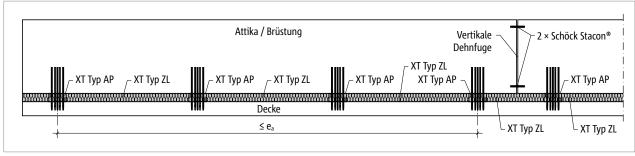
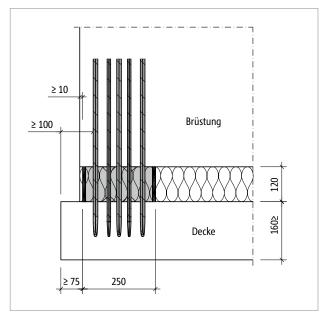


Abb. 38: Schöck Isokorb® XT Typ AP: Dehnfugenanordnung


Schöck Isokorb® XT Typ AP 1.0		MM1-VV1
Maximaler Dehnfugenabs	tand bei	e _a [m]
Dämmkörperdicke [mm]	120	23,0

Schöck Isokorb® T Typ AP 1.0		MM1-VV1
Maximaler Abstand bei		e _a [m]
Dämmkörperdicke [mm]	80	13,5

II Horizontale Dehnfugen

Aus den auf den Schöck Isokorb® als Bauteilanschluss bezogenen Fugen- und Randabständen ergibt sich keine erforderliche horizontale Dehnfuge zwischen Außenbauteil und Decke.

Randabstände



Abb. 39: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Ansicht Randabstände

Abb. 40: Schöck Isokorb® XT/T Typ AP horizontale Anordnung: Ansicht Randabstände

Randabstände

Der Schöck Isokorb® muss an der Dehnfuge so angeordnet werden, dass folgende Bedingungen eingehalten werden:

- Für den Abstand des Dämmkörpers vom Rand der Brüstung, bzw. der Dehnfuge in der Brüstung gilt: e_R ≥ 10 mm.
- Für den Abstand des Dämmkörpers vom Rand der Decke gilt: e_R ≥ 75 mm.
- Für den Abstand des Anschlussbügels vom Rand der Decke in der Decke gilt: e_R ≥ 100 mm.
- Die Randabstände in Decke und Brüstung können unterschiedlich gewählt werden.

<u>ragwerksplanung</u>

Produktbeschreibung

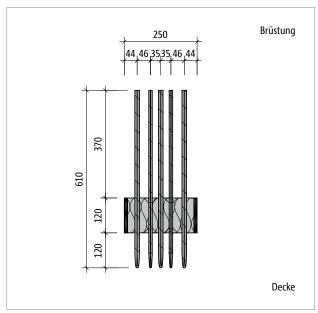


Abb. 41: Schöck Isokorb® XT Typ AP: Produktschnitt

Abb. 42: Schöck Isokorb® T Typ AP: Produktansicht

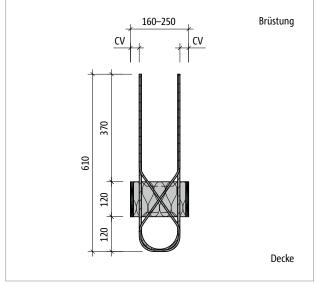


Abb. 43: Schöck Isokorb® XT Typ AP: Produktansicht

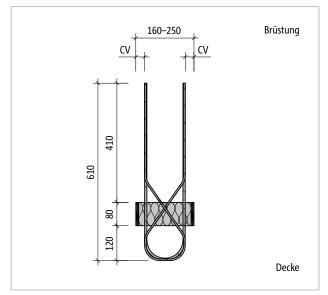


Abb. 44: Schöck Isokorb® T Typ AP: Produktansicht

Produktinformationen

- Mindestbreite der Brüstung/Attika b_{min} = 160 mm, Mindestdeckenhöhe h_{min} = 160 mm beachten.
- Download weiterer Grundrisse und Schnitte unter https://cad.schoeck.at

Betondeckung

Betondeckung

Die Betondeckung CV des Schöck Isokorb® XT/T Typ AP variiert in Abhängigkeit von der Brüstungsstärke/Deckenhöhe. Da für die Bewehrung der Brüstung im Bereich des Schöck Isokorb® ausschließlich nichtrostende, gerippte Betonstähle verwendet werden, besteht kein Korrosionsrisiko.

Schöck Isokorb® XT/T Typ AP 1.0		MM1-VV1
Betondeckung bei		CV [mm]
_	160	30
	170	35
	180	40
	190	45
Isokorb® Höhe H [mm]	200	30
isokoru none n [iiiiii]	210	35
	220	40
	230	45
	240	50
	250	55

Bauseitige Bewehrung

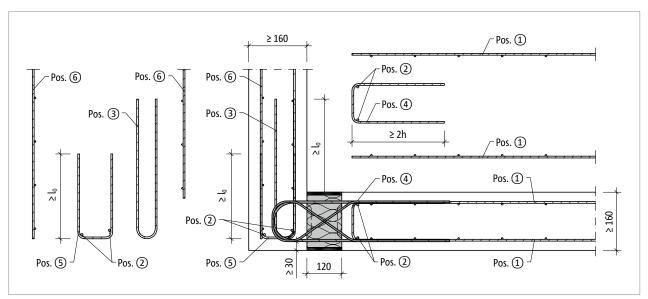


Abb. 45: Schöck Isokorb® XT/T Typ AP horizontale Anordnung: Bauseitige Bewehrung

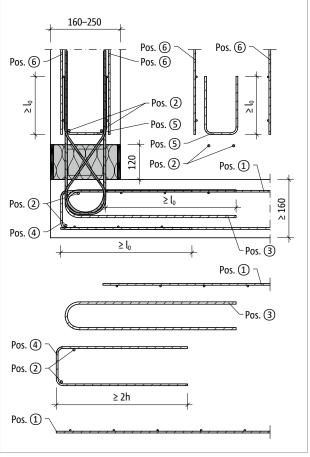


Abb. 46: Schöck Isokorb® XT/T Typ AP vertikale Anordnung: Bauseitige Bewehrung

Bauseitige Bewehrung | Einbauanleitung

Vorschlag zur bauseitigen Anschlussbewehrung

Angabe der Übergreifungsbewehrung für Schöck Isokorb® bei einer Beanspruchung von 100 % des maximalen Bemessungsmoments bei C25/30; konstruktiv gewählt: a_s Übergreifungsbewehrung $\ge a_s$ Isokorb® Zug-/Druckstäbe.

Schöck Isokorb® X	T/T Typ AP 1.0	MM1-VV1
Bauseitige Bewehrung	Ort	Decke (XC1) Betonfestigkeitsklasse ≥ C25/30 Balkon (XC4) Betonfestigkeitsklasse ≥ C25/30
Übergreifungsbewehrung		
Pos. 1 [cm ² /Element]	dadronsoitia	2,01
Übergreifungslänge lo [mm]	deckenseitig	340
Stabstahl längs der Dämmfuge		
Pos. 2	deckenseitig/ brüstungsseitig	4 Ø 8
Bügel als Aufhängebewehrung		
Pos. 3	deckenseitig/ brüstungsseitig	4 Ø 8
Anschlussbewehrung		
Pos. 4	deckenseitig	4 Ø 8
Konstruktive Randeinfassung		
Pos. 5	hviistungssoitig	ø 8/250 mm
Übergreifungslänge lo [mm]	brüstungsseitig	340
Übergreifungsbewehrung		
Pos. 6 [cm ² /Element]	hrüstungssoitig	2,01
Übergreifungslänge l₀ [mm]	brüstungsseitig	340

II Einbauanleitung

Die aktuelle Einbauanleitung finden Sie online unter: www.schoeck.com/view/1278